The European Physical Journal Special Topics

, Volume 216, Issue 1, pp 21–29 | Cite as

Brownian dynamics simulation of polydisperse hard spheres

  • A. ScalaEmail author
Regular Article


Standard algorithms used for the numerical integration of the Langevin equation require that interactions should slowly vary during the integration time-step. This in not the case for hard-body systems, where there is no clear-cut between the correlation time of the noise and the time-scale of the interactions. Starting with a short time approximation of the Smoluchowski equation, we introduce an algorithm for the simulation of the over-damped Brownian dynamics of polydisperse hard-spheres in absence of hydrodynamic interactions and briefly discuss the extension to the case of external drifts.


Brownian Motion European Physical Journal Special Topic Smoluchowski Equation Brownian Dynamic Simulation Random Displacement 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    P.N. Pusey, W. van Megen, Nature 320, 340 (1986)CrossRefADSGoogle Scholar
  2. 2.
    A. Yethiraj, A. van Blaaderen, Nature 421, 513 (2003)CrossRefADSGoogle Scholar
  3. 3.
    M.P. Allen, D.J. Tildesley, Computer Simulation of Liquids, 2nd edn. (Clarendon Press, Oxford, 1987)Google Scholar
  4. 4.
    H.A. Kramers, Physica 7, 284 (1940)CrossRefzbMATHADSMathSciNetGoogle Scholar
  5. 5.
    A. Scala, Phys. Rev. E 86, 026709 (2012)CrossRefADSGoogle Scholar
  6. 6.
    H. Trotter, Proc. Amer. Mat. Soc. 10, 545 (1959)CrossRefzbMATHMathSciNetGoogle Scholar
  7. 7.
    G. De Fabritiis, M. Serrano, P. Espanol, P.V. Coveney, Physica A: Stat. Mech. Appl. 361, 429 (2006)CrossRefADSGoogle Scholar
  8. 8.
    A. Scala, C. De Michele, Th. Voigtmann, J. Chem. Phys. 126, 134109 (2007)CrossRefADSGoogle Scholar
  9. 9.
    P.E. Kloeden, E. Platen, Applications of Mathematics, vol. 23, 3rd edn. (Springer, 1999)Google Scholar
  10. 10.
    D. Kannan, V. Lakshmikantham, Handbook of stochastic analysis and applications (Marcel Dekker, 2002)Google Scholar
  11. 11.
    M.H. Ernst, J.R. Dorfman, W.R. Hoegy, J.M.J. Van Leeuwen, Physica 45, 127 (1969)CrossRefADSGoogle Scholar
  12. 12.
    T.P.C. van Noije, M.H. Ernst, R. Brito, Physica A: Stat. Theor. Phys. 251, 266 (1998)CrossRefADSGoogle Scholar
  13. 13.
    M.V. Smoluchowski, Z. Phys. 17, 585 (1916)Google Scholar
  14. 14.
    B. Cichocki, Z. Phys. B Cond. Matter 66, 537 (1987)CrossRefGoogle Scholar
  15. 15.
    B. Cichocki, K. Hinsen, Physica A 166, 473 (1990)CrossRefADSGoogle Scholar
  16. 16.
    W. Schaertl, H. Sillescu, J. Stat. Phys. 74, 687 (1994)CrossRefADSGoogle Scholar
  17. 17.
    P. Strating, Phys. Rev. E 59, 2175 (1999)CrossRefADSGoogle Scholar
  18. 18.
    T.M.A.O.M. Barenbrug, E.A.J.F.F. Peters, J.D. Schieber, J. Chem. Phys. 117, 9202 (2002)CrossRefADSGoogle Scholar
  19. 19.
    M. Terada, Y. Tokuyama, J. Korean Phys. Soc. 38, 512 (2001)Google Scholar
  20. 20.
    G. Foffi, C.D. De Michele, F. Sciortino, P. Tartaglia, Phys. Rev. Lett. 94, 078301 (2005)CrossRefADSGoogle Scholar
  21. 21.
    D.C. Rapaport, The Art of Molecular Dynamics Simulation (Cambridge University Press, 2004)Google Scholar
  22. 22.
    S. Hanna, W. Hess, R. Klein, Physica A 111, 181 (1982)CrossRefADSMathSciNetGoogle Scholar
  23. 23.
    B.J. Ackerson, L. Fleishman, J. Chem. Phys. 76, 2675 (1982)CrossRefADSGoogle Scholar
  24. 24.
    S. Redner, A Guide to First-Passage Processes (Cambridge University Press, 2001)Google Scholar
  25. 25.
    G. Lamm, K. Schulten, J. Chem. Phys. 78, 2713 (1983)CrossRefADSGoogle Scholar
  26. 26.
    O. Henrich, F. Weysser, M.E. Cates, M. Fuchs, Phil. Trans. R. Soc. A 367, 5033 (2009)CrossRefzbMATHADSGoogle Scholar
  27. 27.
    M. Krüger, F. Weysser, T. Voigtmann, Phys. Rev. E 81, 061506 (2010)CrossRefADSGoogle Scholar
  28. 28.
    M. Krüger, F. Weysser, M. Fuchs, Eur. Phys. J. E: Soft Matter Biol. Phys. 34, 1 (2011)CrossRefGoogle Scholar
  29. 29.
    M. Marechal, M. Hermes, M. Dijkstra, J. Chem. Phys. 135, 034510 (2011)CrossRefADSGoogle Scholar

Copyright information

© EDP Sciences and Springer 2013

Authors and Affiliations

  1. 1.ISC-CNR Physics Dept., Univ. “La Sapienza”RomaItaly
  2. 2.IMT Alti Studi LuccaLuccaItaly
  3. 3.London Institute of Mathematical SciencesMayfair LondonUK

Personalised recommendations