Advertisement

The European Physical Journal Special Topics

, Volume 216, Issue 1, pp 3–20 | Cite as

Statistical universality and the method of Poissonian randomizations

  • Iddo EliazarEmail author
Review

Abstract

In this paper we demonstrate the remarkable effectiveness of Poissonian randomizations in the generation of statistical universality. We do so via a highly versatile spatio-statistical model in which points are randomly scattered, according to a Poisson process, across a general metric space. The points have general independent and identically distributed random physical characteristics. A probe is positioned in space, and is affected by the points. The effect of a given point on the probe is a function of the physical characteristic of the point and the distance of the point from the probe. We determine the classes of Poissonian randomizations – i.e., the spatial Poissonian scatterings of the points – that render the effects of the points invariant with respect to the physical characteristics of the points. These Poissonian randomizations have intrinsic power-law structures, yield statistical robustness, and generate universal statistics including Lévy distributions and extreme-value distributions. In effect, our results establish how “fractal” spatial geometries lead to statistical universality.

Keywords

Poisson Process European Physical Journal Special Topic Race Model Poissonian Intensity Statistical Universality 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    I. Eliazar, J. Klafter, Ann. Phys. 326, 2517 (2011)CrossRefzbMATHADSGoogle Scholar
  2. 2.
    R. Metzler, J. Klafter, Phys. Rep. 339, 1 (2000)MathSciNetCrossRefzbMATHADSGoogle Scholar
  3. 3.
    J. Klafter, I.M. Sokolov, Phys. World 18, 29 (2005)Google Scholar
  4. 4.
    I.M. Sokolov, J. Klafter, Chaos 15, 026103 (2005)MathSciNetCrossRefADSGoogle Scholar
  5. 5.
    W.J. Adams, The Life and Times of the Central Limit Theorem (American Mathematical Society, Providence, 2009)Google Scholar
  6. 6.
    H. Fischer, A History of the Central Limit Theorem: From Classical to Modern Probability Theory (Springer, New York, 2010)Google Scholar
  7. 7.
    J.F.C. Kingman, Poisson Processes (Oxford University Press, Oxford, 1993)Google Scholar
  8. 8.
    P. Embrechts, C. Kluppelberg, T. Mikosch, Modelling Extremal Events for Insurance and Finance (Springer, New York, 1997)Google Scholar
  9. 9.
    I. Eliazar, J. Klafter, Phys. Rep. 511, 143 (2012)MathSciNetCrossRefADSGoogle Scholar
  10. 10.
    R.W. Wolff, Stochastic Modeling and the Theory of Queues (Prentice-Hall, London, 1989)Google Scholar
  11. 11.
    S.B. Lowen, M.C. Teich, Fractal-Based Point Processes (Wiley, New York, 2005)Google Scholar
  12. 12.
    I. Eliazar, J. Klafter, Proc. Natl. Acad. Sci. (USA) 106, 12251 (2009)CrossRefADSGoogle Scholar
  13. 13.
    I. Eliazar, J. Klafter, Phys. Rev. Lett. 103, 040602 (2009)CrossRefADSGoogle Scholar
  14. 14.
    I. Eliazar, J. Klafter, J. Phys. A 42, 472003 (2009)MathSciNetCrossRefADSGoogle Scholar
  15. 15.
    I. Eliazar, J. Klafter, J. Phys. A 43, 132002 (2010)MathSciNetCrossRefADSGoogle Scholar
  16. 16.
    I. Eliazar, J. Klafter, Phys. Rev. E 82, 021109 (2010)CrossRefADSGoogle Scholar
  17. 17.
    I. Eliazar, J. Klafter, Phys. Rev. E 82, 011112 (2010)MathSciNetCrossRefADSGoogle Scholar
  18. 18.
    I. Eliazar, J. Klafter, J. Phys. A 44, 222001 (2011)MathSciNetCrossRefADSGoogle Scholar
  19. 19.
    I. Eliazar, J. Klafter, J. Phys. A 44, 405006 (2011)MathSciNetCrossRefGoogle Scholar
  20. 20.
    I. Eliazar, O. Benichou, J. Phys. A 45 015003 (2012)MathSciNetCrossRefADSGoogle Scholar
  21. 21.
    I. Eliazar, J. Klafter, Chem. Phys. 370, 290 (2010)CrossRefADSGoogle Scholar
  22. 22.
    I. Eliazar, J. Klafter, Phys. Rev. E 82, 021122 (2010)MathSciNetCrossRefADSGoogle Scholar
  23. 23.
    I. Eliazar, J. Klafter, J. Phys. A 44, 415003 (2011)MathSciNetCrossRefGoogle Scholar
  24. 24.
    I. Eliazar, M.F. Shlesinger, J. Stat. Phys. 146, 1 (2012)MathSciNetCrossRefzbMATHADSGoogle Scholar
  25. 25.
    J. Holtsmark, Ann. Physik 58, 577 (1919)CrossRefADSGoogle Scholar
  26. 26.
    S. Chandrasekhar, Rev. Mod. Phys. 15, 1 (1943)MathSciNetCrossRefzbMATHADSGoogle Scholar
  27. 27.
    P. Lévy, Théorie de l’addition des variables Alé atoires (Gauthier-Villars, Paris, 1954)Google Scholar
  28. 28.
    B.V. Gnedenko, A.N. Kolmogorov, Limit Distributions for Sums of Independent Random Variables (Addison-Wesley, London, 1954)Google Scholar
  29. 29.
    I.A. Ibragimov, Yu.V. Linnik, Independent and Stationary Sequences of Random Variables (Walterss-Noordhoff, Groningen, The Netherlands, 1971)Google Scholar
  30. 30.
    V.M. Zolotarev, One-Dimensional Stable Distributions (American Mathematical Society, Providence, 1986)Google Scholar
  31. 31.
    J.P. Nolan, Stable Distributions: Models for Heavy Tailed Data (Birkhauser, New York, 2012)Google Scholar
  32. 32.
    B.B. Mandelbrot, J.R. Wallis, Water Resources Res. 4, 909 (1968)CrossRefADSGoogle Scholar
  33. 33.
    B.B. Mandelbrot, Fractals and Scaling in Finance (Springer, New York, 1997)Google Scholar
  34. 34.
    B. Mandelbrot, N.N. Taleb, in The known, the Unknown and the Unknowable in Financial Institutions, edited by F. Diebold, N. Doherty, R. Herring (Princeton University Press, Princeton, 2010), p. 47Google Scholar
  35. 35.
    N. Balakrishnan, V.B. Nevzorov, A Primer on Statistical Distributions (Wiley, New York, 2003)Google Scholar
  36. 36.
    K. Krishnamoorthy, Handbook of Statistical Distributions with Applications (CRC Press, Buca Raton, 2006)Google Scholar
  37. 37.
    C. Forbes, M. Evans, N. Hastings, B. Peacock,Statistical Distributions (Wiley, New York, 2010)Google Scholar
  38. 38.
    K.A. Penson, K. Górska, Phys. Rev. Lett. 105, 210604 (2010)MathSciNetCrossRefADSGoogle Scholar
  39. 39.
    K. Górska, K.A. Penson, Phys. Rev. E 83, 061125 (2011)CrossRefADSGoogle Scholar
  40. 40.
    J.M. Chambers, C.L. Mallows, B. Stuck, J. Amer. Stat. Assoc. 71, 340 (1976)MathSciNetCrossRefzbMATHGoogle Scholar
  41. 41.
    M. Fréchet, Ann. Soc. Polon. Math. Cracovie, 6, 93 (1927)Google Scholar
  42. 42.
    E.J. Gumbel, Statistics of Extremes (Dover, Mineola, 2004; originally published by Columbia University Press, 1958)Google Scholar
  43. 43.
    J. Galambos, Asymptotic Theory of Extreme Order Statistics, 2nd edn. (Krieger, Melbourne, Florida, 1987)Google Scholar
  44. 44.
    S. Kotz, S. Nadarajah, Extreme Value Distributions (Imperial College Press, London, 2000)Google Scholar
  45. 45.
    J. Beirlant, Y. Goegebeur, J. Segers, J. Teugels, Statistics of Extremes: Theory and Applications (Wiley, New York, 2004)Google Scholar
  46. 46.
    L. de Haan, Ana Ferreira, Extreme Value Theory: An Introduction (Springer, New York, 2006)Google Scholar
  47. 47.
    R.D. Reiss, M. Thomas, Statistical Analysis of Extreme Values: with Applications to Insurance, Finance, Hydrology and Other Fields (Birkhauser, Basel, 2007)Google Scholar
  48. 48.
    I. Eliazar, J. Klafter, J. Stat. Phys. 131, 487 (2008)MathSciNetCrossRefzbMATHADSGoogle Scholar
  49. 49.
    W. Weibull, Ingeniors Vetenskaps Akademiens, Stockholm, 151 (1939)Google Scholar
  50. 50.
    W. Weibull, ASME J. Appl. Mech. 18, 293 (1951)zbMATHGoogle Scholar
  51. 51.
    D.N.P. Murthy, M. Xie, R. Jiang, Weibull Models (Wiley, New York, 2003)Google Scholar
  52. 52.
    B. Dodson, The Weibull Analysis Handbook (ASQ Press, Milwaukee, 2006)Google Scholar
  53. 53.
    R. Abernethy, The New Weibull Handbook, 5th edn. (Dr. Robert. Abernethy, 2006)Google Scholar
  54. 54.
    H. Rinne, The Weibull Distribution: A Handbook (CRC Press, Buca Raton, 2008)Google Scholar
  55. 55.
    J.I. McCool, Using the Weibull Distribution: Reliability, Modeling and Inference (Wiley, New York, 2012)Google Scholar
  56. 56.
    J.C. Phillips, Rep. Prog. Phys. 59, 1133 (1996)CrossRefADSGoogle Scholar
  57. 57.
    J. Laherrere, D. Sornette, Eur. Phys. J. B 2, 525 (1998)CrossRefADSGoogle Scholar
  58. 58.
    W.T. Coffey, Yu.P. Kalmykov, Fractals, Diffusions and Relaxation in Disordered Systems (Wiley-Interscience, New York, 2006)Google Scholar
  59. 59.
    S. Heaps, Information Retrieval: Computational and Theoretical Aspects (Academic Press, Boston, 1978)Google Scholar
  60. 60.
    R. Baeza–Yates, G. Navarro, J. Amer. Soc. for Inform. Sci. 51, 69 (2000)CrossRefGoogle Scholar
  61. 61.
    D.C. van Leijenhorst, Th.P. van der Weide, Inform. Sci. 170, 263 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  62. 62.
    C. Cattutoa, et al., Proc. Natl. Acad. Sci. 106, 10511 (2009)CrossRefGoogle Scholar
  63. 63.
    M.A. Serrano, A. Flammini, F. Menczer, PLoS ONE 4, e5372 (2009)CrossRefADSGoogle Scholar
  64. 64.
    L. Lu, Z.K. Zhang, T. Zhou, PLoS ONE 5, e14139 (2010)CrossRefADSGoogle Scholar
  65. 65.
    H. Hu, D. Han, X. Wang, Physica A 389, 1065 (2010)CrossRefADSGoogle Scholar
  66. 66.
    I. Eliazar, Physica A 390, 3189 (2011)CrossRefADSGoogle Scholar
  67. 67.
    V. Pareto, Cours D’économie Politique (Droz, Geneva, 1896)Google Scholar
  68. 68.
    M. Mitzenmacher, Internet Math. 1, 226 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  69. 69.
    M.E.J. Newman, Contemp. Phys. 46, 323 (2005)CrossRefADSGoogle Scholar
  70. 70.
    A. Clauset, C.R. Shalizi, M.E.J. Newman, SIAM Rev. 51, 661 (2009)MathSciNetCrossRefzbMATHADSGoogle Scholar
  71. 71.
    X. Gabaix, Ann. Rev. Econ. 1, 255 (2009)CrossRefGoogle Scholar
  72. 72.
    I. Eliazar, J. Klafter, Phys. Rev. E 77, 061125 (2008)CrossRefADSGoogle Scholar
  73. 73.
    I. Eliazar, Phys. Rev. E 77, 061103 (2008)CrossRefADSGoogle Scholar
  74. 74.
    B.B. Mandelbrot, The Fractal Geometry of Nature (Freeman, New York, 1982)Google Scholar
  75. 75.
    M. Schroeder, Fractals, Chaos, Power Laws: Minutes from an Infinite Paradise (Dover, Mineola, 2009; originally published by Freeman, 1991)Google Scholar
  76. 76.
    H.O. Peitgen, H. Jurgens, D. Saupe, Chaos and Fractals (Springer, New York, 1992)Google Scholar
  77. 77.
    A. Bunde, S. Havlin (eds.), Fractals and Disordered Systems (Springer, New York, 1995)Google Scholar
  78. 78.
    D. Ben-Avraham, S. Havlin, Diffusion and Reactions in Fractals and Disordered Systems (Cambridge University Press, Cambridge, 2005)Google Scholar
  79. 79.
    I. Eliazar, J. Klafter, Physica A 383, 171 (2007)CrossRefADSGoogle Scholar
  80. 80.
    I. Eliazar, I.M. Sokolov, Physica A 391, 3043 (2012)MathSciNetCrossRefADSGoogle Scholar
  81. 81.
    I. Eliazar, J. Klafter, Risk Decisions Anal. 1, 155 (2009)zbMATHGoogle Scholar
  82. 82.
    I. Eliazar, J. Klafter, Physica A 387, 4985 (2008)MathSciNetCrossRefADSGoogle Scholar
  83. 83.
    I. Eliazar, J. Klafter, Phys. Rev. E 79, 011103 (2009)MathSciNetCrossRefADSGoogle Scholar
  84. 84.
    I. Eliazar, I.M. Sokolov, Phys. Rev. E 81, 011122 (2010)CrossRefADSGoogle Scholar
  85. 85.
    I. Eliazar, I.M. Sokolov, Physica A 389, 4462 (2010)MathSciNetCrossRefADSGoogle Scholar

Copyright information

© EDP Sciences and Springer 2013

Authors and Affiliations

  1. 1.Holon Institute of TechnologyHolonIsrael

Personalised recommendations