Advertisement

The European Physical Journal Special Topics

, Volume 215, Issue 1, pp 123–134 | Cite as

The structure and evolution of a skyway network

  • Arthur Huang
  • David Levinson
Regular Article

Abstract

We study the structure and evolution of the downtown Minneapolis, Minnesota skyway network. Developed by private building-owners, the network evolved from tree-like to grid-like over the course of 50 years. We find that decentralized forces with the goal of maximizing individual buildings’ profitability shaped the network. Our analysis shows that a building with greater office size, a sign of greater accessibility, was more likely to be connected earlier. The distribution of existing skyway segments is found to follow a power-law function of the average degree, closeness, and eigenvector centralities of the vertices. We further explain and model the evolutionary process using an agent-based model. The simulation results suggest that the model replicates the network structure and its evolutionary process.

Keywords

European Physical Journal Special Topic Betweenness Centrality Simulated Network Average Path Length Individual Investor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. Guimerà, L. Amaral, Eur. Phys. J. B 36, 381 (2004)CrossRefADSGoogle Scholar
  2. 2.
    R. Guimerà, S. Mossa, A. Turtschi, L. Amaral, Proc. Natl. Acad. Sci. 102, 7794 (2005)CrossRefzbMATHADSGoogle Scholar
  3. 3.
    K. Seaton, L. Hackett, Phys. A 339, 635 (2004)MathSciNetCrossRefGoogle Scholar
  4. 4.
    P. Sen, S. Dasgupta, A. Chatterjee, P. Sreeram, G. Mukherjee, S. Manna, Phys. Rev. E 67, 36106 (2003)CrossRefADSGoogle Scholar
  5. 5.
    V. Latora, M. Marchiori, Phys. A 314, 109 (2002)CrossRefzbMATHGoogle Scholar
  6. 6.
    A. Schadschneider, W. Knospe, L. Santen, L. Schreckenberg, Physica A 346, 165 (2005)CrossRefADSGoogle Scholar
  7. 7.
    A. Masucci, D. Smith, A. Crooks, M. Batty, Eur. Phys. J. B 71, 259 (2009)MathSciNetCrossRefzbMATHADSGoogle Scholar
  8. 8.
    S. Lämmer, B. Gehlsen, D. Helbing, Physica A 363, 89 (2006)CrossRefADSGoogle Scholar
  9. 9.
    D. Levinson, B. Yerra, Trans. Sci. 40, 179 (2006)CrossRefGoogle Scholar
  10. 10.
    M. Corbett, F. Xie, D. Levinson, Environ. Planning B 36, 711 (2009)CrossRefGoogle Scholar
  11. 11.
    F. Xie, D. Levinson, Evolving Trans. Networks (Springer, 2011), p. 294Google Scholar
  12. 12.
    S. Dorogovtsev, J. Mendes, Adv. Phys. 51, 1079 (2002)CrossRefADSGoogle Scholar
  13. 13.
    D.J. Price, Science 149, 510 (1965)CrossRefADSGoogle Scholar
  14. 14.
    A. Barabási, R. Albert, Science 286, 509 (1999)MathSciNetCrossRefADSGoogle Scholar
  15. 15.
    O. Frank, D. Strauss, J. Amer. Stat. Asso. 81, 832 (1986)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    S. Wasserman, P. Pattison, Psychometrika 61, 401 (1996)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    M. Gastner, M. Newman, J. Stat. Mech. 1, 01015 (2006)CrossRefGoogle Scholar
  18. 18.
    F. Schweitzer, W. Ebeling, H. Rose, O. Weiss, Evolutionary Comput. 5, 419 (1997)CrossRefGoogle Scholar
  19. 19.
    D. Yamins, S. Rasmussen, D. Fogel, Networks Spat. Econ. 3, 69 (2003)CrossRefGoogle Scholar
  20. 20.
    M. Gastner, M. Newman, Eur. Phys. J. B 49, 247 (2006)CrossRefADSGoogle Scholar
  21. 21.
    M. Los, C. Lardinois, Trans. Res. Pt. B 16, 89 (1982)MathSciNetCrossRefGoogle Scholar
  22. 22.
    P. Steenbrink, Optimization of transport networks (John Wiley & Sons, 1974), p. 342Google Scholar
  23. 23.
    M. Barthélémy, A. Flammini, Phys. Rev. Lett. 100, 138702 (2008)CrossRefADSGoogle Scholar
  24. 24.
    D. Helbing, F. Schweitzer, J. Keltsch, P. Molnár, Phys. Rev. E 56, 2527 (1997)CrossRefADSGoogle Scholar
  25. 25.
    D. Helbing, J. Keltsch, P. Molnár, Nature 388, 47 (1998)CrossRefADSGoogle Scholar
  26. 26.
    B. Yerra, D. Levinson, Ann. Reg. Sci. 39, 541 (2005)CrossRefGoogle Scholar
  27. 27.
    M. Batty, Y. Xie, Z. Sun, Comput. Environm. Urban Sys. 23, 205 (1999)CrossRefGoogle Scholar
  28. 28.
    M. Barthélémy, Phys. Rev. E 68, 026104 (2003)CrossRefGoogle Scholar
  29. 29.
    A. Barrat, M. Barthélémy, A. Vespignani, J. Stat. Mech., P05003 (2005)Google Scholar
  30. 30.
    S. Boccaletti, V. Latora, Y. Moreno, M. Chavez, D.-U. Hwang, Phys. Rep. 424, 175 (2006)MathSciNetCrossRefADSGoogle Scholar
  31. 31.
    M. Barthélémy, Phys. Rep. 499, 1 (2011)MathSciNetCrossRefADSGoogle Scholar
  32. 32.
    F. Xie, D. Levinson, Networks Spat. Econ. 9, 291 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  33. 33.
    D. Levinson, J. Trans. Land Use 4, 1 (2011)Google Scholar
  34. 34.
    J. Fox, R. Rindfuss, S. Walsh, V. Mishra, People and the Environment (Kluwer, 2003), p. 344Google Scholar
  35. 35.
    S. Manson, T. Evans, Proc. Natl. Acad. Sci. 104, 20678 (2007)CrossRefADSGoogle Scholar
  36. 36.
    J.P. Byers, Breaking the Ground Plane, Ph.D. thesis, Univ. of MN, 1998Google Scholar
  37. 37.
    M. Kramer, Minnesota Leasing Guide (Law Bulletin, Chicago, IL, 2004)Google Scholar
  38. 38.
    J. Buhl, J. Gautrais, R.V. Solé, P. Kuntz, S. Valverde, J. Deneubourg, G. Theraulaz, Eur. Phys. J. B 42, 123 (2004)CrossRefADSGoogle Scholar
  39. 39.
    S. Wasserman, K. Faust, Social Network Analysis: Methods and Applications (Cambridge University Press, 1994)Google Scholar
  40. 40.
    G. Sabidussi, Psychometrika 31, 581 (1966)MathSciNetCrossRefzbMATHGoogle Scholar
  41. 41.
    L.C. Freeman, Social Networks 1, 215 (1979)CrossRefGoogle Scholar
  42. 42.
    P. Bonacich, Amer. J. Sociol. 92, 1170 (1987)CrossRefGoogle Scholar
  43. 43.
    A. El-Geneidy, L. Kastelberger, H. Abdelhamid, J. Trans. Land Use 4, 33 (2011)Google Scholar
  44. 44.
    C.J. van Rijsbergen, Information Retrieval (Butterworth-Heinemann, 1979)Google Scholar
  45. 45.
    C. Spearman, Amer. J. Psychol. 15, 72101 (1904)Google Scholar

Copyright information

© EDP Sciences and Springer 2013

Authors and Affiliations

  1. 1.University of MinnesotaMinneapolisUSA

Personalised recommendations