The European Physical Journal Special Topics

, Volume 215, Issue 1, pp 61–73 | Cite as

Understanding the patterns of car travel

  • Luca Pappalardo
  • Salvatore Rinzivillo
  • Zehui Qu
  • Dino Pedreschi
  • Fosca Giannotti
Regular Article


Are the patterns of car travel different from those of general human mobility? Based on a unique dataset consisting of the GPS trajectories of 10 million travels accomplished by 150,000 cars in Italy, we investigate how known mobility models apply to car travels, and illustrate novel analytical findings. We also assess to what extent the sample in our dataset is representative of the overall car mobility, and discover how to build an extremely accurate model that, given our GPS data, estimates the real traffic values as measured by road sensors.


Global Position System European Physical Journal Special Topic Global Position System Data Global Position System Receiver Human Mobility 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    F. Giannotti, M. Nanni, D. Pedreschi, F. Pinelli, C. Renso, S. Rinzivillo, R. Trasarti, VLDB Journal 20, 695 (2011)CrossRefGoogle Scholar
  2. 2.
    F. Giannotti, D. Pedreschi, Mobility, Data Mining and Privacy – Geographic Knowledge Discovery (Springer 2008)Google Scholar
  3. 3.
    D. Brockmann, L. Hufnagel, T. Geisel, Nature 439, 462 (2006)CrossRefADSGoogle Scholar
  4. 4.
    M.C. González, C.A. Hidalgo, A.L. Barabási, Nature 454, 779 (2008)CrossRefGoogle Scholar
  5. 5.
    C. Song, T. Koren, P. Wang, A.L. Barabási, Nat. Phys. 6, 818 (2010)CrossRefGoogle Scholar
  6. 6.
    R. Trasarti, F. Pinelli, M. Nanni, F. Giannotti, in Proceedings of KDD (2011), p. 1190Google Scholar
  7. 7.
    S. Rinzivillo, S. Mainardi, F. Pezzoni, M. Coscia, D. Pedreschi, F. Giannotti, Künstliche Intelligenz (to appear) (2012)Google Scholar
  8. 8.
    S. Rinzivillo, D. Pedreschi, M. Nanni, F. Giannotti, N. Andrienko, G. Andrienko, Information Visualiz. 7, 225 (2008)CrossRefGoogle Scholar
  9. 9.
    A. Bazzani, B. Giorgini, S. Rambaldi, R. Gallotti, L. Giovannini, J. Statist. Mechan. Theory Exper. (2010)Google Scholar
  10. 10.
    K. Lee, S. Hong, S.J. Kim, I. Rhee, S. Chong, Demystifying levy walk patterns in human walks, NCSU, Technical Report, 2008Google Scholar
  11. 11.
    M. Zignani, S. Gaito, On Wireless Days (WD), 2010 IFIP (October 2010), p. 1Google Scholar
  12. 12.
    N.J. Garber, L.A. Hoel, Traffic and Highway Engineering (Brooks/Cole Publishing Company, 1999)Google Scholar
  13. 13.
    N. Stamatiadis, D.L. Allen, J. Transp. Res. Board 1593, 23 (1997)CrossRefGoogle Scholar
  14. 14.
    B.M. Williams, L.A. Hoel, J. Transp. Eng. 129, 664 (2003)CrossRefGoogle Scholar
  15. 15.
    B. Ghosh, B. Basu, M. O’Mahony, J. Transp. Eng. 133, 180 (2007)CrossRefGoogle Scholar
  16. 16.
    Z. Wei, Z. Jinfu, in Proceedings of the IEEE International Conference on Grey Systems and Intelligent Services (GSIS) (2009), p. 630Google Scholar
  17. 17.
    J.H. Friedman, Intelligent local learning for prediction in high dimensions, International Conference on Artificial Neural Networks (ICANN 95) (Paris, 1995)Google Scholar
  18. 18.
    H. Sun, H.X. Liu, H. Xiao, R.R. He, B. Ran, J. Transp. Res. Board 1836, 143 (2003)CrossRefGoogle Scholar
  19. 19.
    P. Lingras, S. Sharma, M. Zhong, J. Transp. Res. Board 1805, 16 (2002)CrossRefGoogle Scholar
  20. 20.
    W.-C. Hong, Neurocomputing 74, 20962107 (2011)Google Scholar
  21. 21.
    J.P. Donate, X. Li, G.G. Sánchez, A.S. de Migue, Neural Comp. Applic. 10, 1 (2011)Google Scholar
  22. 22.
    M.A. Abramowicz, J.C. Miller, Z. Stuchlík, Phys. Rev. D 47, 1440 (1993)CrossRefADSGoogle Scholar
  23. 23.
    P.N. Tan, M. Steinbach, V. Kumar, Introduction to Data Mining, 1 edn. (Addison Wesley, 2005)Google Scholar
  24. 24.
    G. Strang, SIAM Rev. 31, 614 (1989)MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    N.M. Temme, Appl. Comput. Harmonic Anal. 4, 414428 (1997)MathSciNetCrossRefGoogle Scholar
  26. 26.
    D. Svozil, V. Kvasnickab, J. Pospichalb, Chem. Intell. Lab. Syst. 39, 43 (1997)CrossRefGoogle Scholar

Copyright information

© EDP Sciences and Springer 2013

Authors and Affiliations

  1. 1.KDDLab – ISTI – CNRPisaItaly
  2. 2.KDDLab, Department of Computer Science, University of PisaPisaItaly
  3. 3.College of Computer and Information Science, Southwest UniversityChongqingChina

Personalised recommendations