The European Physical Journal Special Topics

, Volume 215, Issue 1, pp 35–48 | Cite as

The accelerated growth of the worldwide air transportation network

  • Mark AzzamEmail author
  • Uwe Klingauf
  • Alexander Zock
Regular Article


Mobility by means of air transportation has a critical impact on the global economy. Especially against the backdrop of further growth and an aggravation of the energy crisis, it is crucial to design a sustainable air transportation system. Current approaches focus on air traffic management. Nevertheless, also the historically evolved network offers great potential for an optimized redesign. But the understanding of its complex structure and development is limited, although modern network science supplies a great set of new methods and tools. So far studies analyzing air transportation as a complex network are based on divers and poor data, which are either merely regional or strongly bounded time-wise. As a result, the current state of research is rather inconsistent regarding topological coefficients and incomplete regarding network evolution. Therefore, we use the historical, worldwide OAG flight schedules data between 1979 and 2007 for our study. Through analyzing by far the most comprehensive data base so far, a better understanding of the network, its evolution and further implications is being provided. To our knowledge we present the first study to determine that the degree distribution of the worldwide air transportation network is non-stationary and is subject to densification and accelerated growth, respectively.


European Physical Journal Special Topic Degree Distribution Node Degree Betweenness Centrality Schedule Data 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    M. Castells, The Rise of the Network Society, The Information Age: Economy, Society and Culture vol. I. (Blackwell Publ., Oxford, 1996)Google Scholar
  2. 2.
    B. Derudder, L. Devriendt, F. Witlox, Tijdsch Econom. Soc. Geogr. 98, 307 (2007)CrossRefGoogle Scholar
  3. 3.
    J. Friedmann, Develop. Change 17, 69 (1986)CrossRefGoogle Scholar
  4. 4.
    S. Sassen, The global city: New York, London, Tokyo (Princeton University Press, 1991)Google Scholar
  5. 5.
    C. Isard, W. Isard, Quart. J. Econom. 59, 145 (1945)CrossRefGoogle Scholar
  6. 6.
    J. Urry, Mobilities (Polity Press, Cambridge, 2007)Google Scholar
  7. 7.
    M. Ishutkina, R.J. Hansman (2008),
  8. 8.
    M. Azzam, P. Bonnefoy, R.J. Hansman, Investigation of the fuel efficiency of the us air transportation network structure, AIAA 2010-9331: Proceedings of the 10th AIAA Aviation Technology, Integration, and Operations (ATIO) Conference (2010)Google Scholar
  9. 9.
    A.L. Barabási, H. Jeong, Z. Nééda, E. Ravasz, A. Schubert, T. Vicsek, Physica A: Stat. Mech. Appl. 311, 590 (2002)CrossRefzbMATHADSGoogle Scholar
  10. 10.
    U. Alon, Science 301, 1866 (2003)CrossRefADSGoogle Scholar
  11. 11.
    M. Girvan, M.E.J. Newman, Proc. Nation. Acad. Sci. 99, 7821 (2002)MathSciNetCrossRefzbMATHADSGoogle Scholar
  12. 12.
    A.L. Barabási, R. Albert, H. Jeong, Physica A: Stat. Mech. Appl. 281, 69 (2000)CrossRefADSGoogle Scholar
  13. 13.
    S. Bornholdt, H. Ebel, Phys. Rev. E 64, 035104 (2001)CrossRefADSGoogle Scholar
  14. 14.
    S.H. Strogatz, Nature 410, 268 (2001)CrossRefADSGoogle Scholar
  15. 15.
    R. Albert, A.L. Barabási, Rev. Mod. Phys. 74, 47 (2002)CrossRefzbMATHADSGoogle Scholar
  16. 16.
    L.A.N. Amaral, A. Scala, M. Barthelemy, H.E. Stanley, Proc. Nation. Acad. Sci. 97, 11149 (2000)CrossRefADSGoogle Scholar
  17. 17.
    A.L. Barabási, R. Albert, Science 286, 509 (1999)MathSciNetCrossRefADSGoogle Scholar
  18. 18.
    A. Barrat, M. Barthelemy, R. Pastor-Satorras, A. Vespignani, Proc. Nation. Acad. Sci. 101, 3747 (2004)CrossRefADSGoogle Scholar
  19. 19.
    D.J. Watts, S.H. Strogatz, Nature 393, 440 (1998)CrossRefADSGoogle Scholar
  20. 20.
    R. Pastor-Satorras, A. Vázquez, A. Vespignani, Phys. Rev. Lett. 87, 258701/1 (2001)CrossRefADSGoogle Scholar
  21. 21.
    A. Barrat, M. Barthelemy, A. Vespignani, J. Stat. Mech.: Theory Exper. P05, 3 (2005)Google Scholar
  22. 22.
    A. Barrat, M. Barthelemy, A. Vespignani, Adv. Compl. Syst. (ACS) 10, 5 (2007)zbMATHGoogle Scholar
  23. 23.
    A. Barrat, M. Barthelemy, A. Vespignani, Phys. Rev. Lett. 92, 228701 (2004)CrossRefADSGoogle Scholar
  24. 24.
    A. Barrat, M. Barthelemy, A. Vespignani, Phys. Rev. E 70, 066149 (2004)CrossRefADSGoogle Scholar
  25. 25.
    G. Bianconi, P. Pin, M. Marsili, Proc. Nation. Acad. Sci. 106, 11433 (2009)CrossRefADSGoogle Scholar
  26. 26.
    R. Guimerá, S. Mossa, A. Turtschi, L.A.N. Amaral, Structure and efficiency of the world-wide airport network [arXiv:cond-mat/0312535v1] (2003)Google Scholar
  27. 27.
    R. Guimerá, S. Mossa, A. Turtschi, L.A.N. Amaral, Proc. Nation. Acad. Sci. 102, 7794 (2005)CrossRefzbMATHADSGoogle Scholar
  28. 28.
    A. Bavelas, Human Organization 7, 16 (1948)Google Scholar
  29. 29.
    L.C. Freeman, Sociometry 40, 35 (1977), American Sociological AssociationGoogle Scholar
  30. 30.
    R. Guimerá, L.A.N. Amaral, Eur. Phys. J. B 38, 381 (2004)CrossRefADSGoogle Scholar
  31. 31.
    S.H. Yook, H. Jeong, A.L. Barabási, Proc. Nation. Acad. Sci. 99, 13382 (2002)CrossRefADSGoogle Scholar
  32. 32.
    M. Barthélemy, Europhys. Lett. 63, 915 (2003)CrossRefADSGoogle Scholar
  33. 33.
    G. Bagler, Physica A: Stat. Mech. Appl. 387, 2972 (2008)CrossRefADSGoogle Scholar
  34. 34.
    Z. Xu, R. Harriss, GeoJournal 73, 87 (2008)CrossRefGoogle Scholar
  35. 35.
    A. Gautreau, A. Barrata, M. Barthélemyd, Proc. Nation. Acad. Sci. 106, 8847 (2009)CrossRefzbMATHADSGoogle Scholar
  36. 36.
    L.E.C.d. Rocha, J. Stat. Mech.: Theory Exper. 2009, P04020 (2009)CrossRefGoogle Scholar
  37. 37.
    M.E.J. Newman, Contemp. Phys. 46, 323 (2005)CrossRefADSGoogle Scholar
  38. 38.
    R. Gibrat, Les Inégalités Economique (Sirely, Paris, 1931)Google Scholar
  39. 39.
    F. Auerbach, Petermanns Geogr. Mitteilungen 59, 74 (1913)Google Scholar
  40. 40.
    G.K. Zipf, Human Behavior and the Principle of Least Effort: An Introduction to Human Ecology (Oxford: Addison-Wesley Press, 1949)Google Scholar
  41. 41.
    J. Eeckhout, The Amer. Eco. Rev. 94, 1429 (2004)CrossRefGoogle Scholar
  42. 42.
    H.A. Simon, Biometrika 42, 425 (1955)MathSciNetCrossRefzbMATHGoogle Scholar
  43. 43.
    P.A. Bonnefoy, R.J. Hansman, Scalability and Evolutionary Dynamics of Air Transportations Networks in the United States, in 7th AIAA Aviation Technology, Integration and Operations Conference (ATIO) (2007)Google Scholar
  44. 44.
    S.N. Dorogovtsev, J.F.F. Mendes, Phys. Rev. E 63, 025101/1 (2001)ADSGoogle Scholar
  45. 45.
    S.N. Dorogovtsev, J.F.F. Mendes, Adv. Phys. 51, 1079 (2002)CrossRefADSGoogle Scholar
  46. 46.
    L. Li, D. Alderson, J.C. Doyle, W. Willinger, Int. Math. 2, 431 (2005)MathSciNetzbMATHGoogle Scholar
  47. 47.
    J. Leskovec, J. Kleinberg, C. Faloutsos, Graphs over Time: Densification Laws, Shrinking Diameters and Possible Explanations, in Proceedings of the eleventh ACM SIGKDD international conference on Knowledge discovery in data mining (2005), p. 177Google Scholar
  48. 48.
    J. Leskovec, J. Kleinberg, C. Faloutsos, ACM Trans. Knowl. Discov. Data 1, 1 (2007)CrossRefGoogle Scholar
  49. 49.
    G. Burghouwt, Airline Network Development in Europe and its Implications for Airport Planning (Ashgate Publishing Limited, 2007)Google Scholar
  50. 50.
    W. Pompl, M. Schuckert, C. Möller, Tourism. J.: Z. Tourism. Forsch. Praxis 4, 457 (2003)Google Scholar
  51. 51.
    M. Azzam, E.M. Cronrath, Airline Network Structures and Development Strategies, in Proceedings of the Air Transport Research Society (ATRS) – 13th Annual World Conference (2009)Google Scholar
  52. 52.
    M. Azzam, K.H.J. Lin, U. Klingauf, An Empirical Investigation of Airport Evolution through Multidimensional Airport Classification, in Proceedings of the Air Transport Research Society (ATRS) – 14th Annual World Conference (2010)Google Scholar

Copyright information

© EDP Sciences and Springer 2013

Authors and Affiliations

  1. 1.Laboratory for Aviation and the Environment, Massachusetts Institute of TechnologyMassachusettsUSA
  2. 2.Institute of Flight Systems and Automatic Control (FSR), Technische Universität DarmstadtDarmstadtGermany
  3. 3.Pelargos Essential AdvisoryFrankfurt am MainGermany

Personalised recommendations