The European Physical Journal Special Topics

, Volume 214, Issue 1, pp 461–479 | Cite as

Causality discovery technology

  • M. Chen
  • T. Ertl
  • M. Jirotka
  • A. Trefethen
  • A. Schmidt
  • B. Coecke
  • R. Bañares-Alcántara
Regular Article


Causality is the fabric of our dynamic world. We all make frequent attempts to reason causation relationships of everyday events (e.g., what was the cause of my headache, or what has upset Alice?). We attempt to manage causality all the time through planning and scheduling. The greatest scientific discoveries are usually about causality (e.g., Newton found the cause for an apple to fall, and Darwin discovered natural selection). Meanwhile, we continue to seek a comprehensive understanding about the causes of numerous complex phenomena, such as social divisions, economic crisis, global warming, home-grown terrorism, etc. Humans analyse and reason causality based on observation, experimentation and acquired a priori knowledge. Today’s technologies enable us to make observations and carry out experiments in an unprecedented scale that has created data mountains everywhere. Whereas there are exciting opportunities to discover new causation relationships, there are also unparalleled challenges to benefit from such data mountains. In this article, we present a case for developing a new piece of ICT, called Causality Discovery Technology. We reason about the necessity, feasibility and potential impact of such a technology.

Graphical abstract


European Physical Journal Special Topic Causality Reasoning Complex World Causality Discovery Probabilistic Causation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    M. Ajmone-Marsan, et al., Eur. Phys. J. Special Topic 214, 547 (2012)Google Scholar
  2. 2.
    M. Atkinson, D. DeRoure, A. Dunlop, G. Fox, P. Henderson, T. Hey, N. Paton, S. Newhouse, S. Parastatidis, A. Trefethen, P. Watson, J. Webber, Concurr. Computation: Practice Exper. 17, 377 (2005)CrossRefGoogle Scholar
  3. 3.
    R. Bañares-Alcántara, J.M.P. King, Comput. Chem. Eng. 21, 263 (1997)CrossRefGoogle Scholar
  4. 4.
    M. Batty, et al., Eur. Phys. J. Special Topic 214, 481 (2012)Google Scholar
  5. 5.
    H. Beebee, C. Hitchcock, P. Menzies (eds.), The Oxford Handbook of Causation (Oxford University Press, 2009)Google Scholar
  6. 6.
    D. Bohm, Causality and Chance in Modern Physics (Routledge, 1984)Google Scholar
  7. 7.
    M. Born, Natural Philosophy of Cause and Chance (Dover Publications, New York, 1949)Google Scholar
  8. 8.
    A. Carbone, et al., Eur. Phys. J. Special Topic 214, 435 (2012)Google Scholar
  9. 9.
    M. Chen, D. Ebert, H. Hagen, R.S. Laramee, R. van Liere, K.-L. Ma, W. Ribarsky, G. Scheuermann, D. Silver, IEEE Comput. Graph. Appl. 29, 12 (2009)CrossRefGoogle Scholar
  10. 10.
    M. Chen, H. Jänicke, IEEE Trans. Visualization Computer Graph. 16, 1206 (2010)CrossRefGoogle Scholar
  11. 11.
    S. Cincotti, et al., Eur. Phys. J. Special Topic 214, 361 (2012)Google Scholar
  12. 12.
    B. Coecke, Contemporary Physics 51, 59 (2010) [arXiv: 0908.1787] [quant-ph]ADSCrossRefGoogle Scholar
  13. 13.
    B. Coecke, R. Lal, “Causal categories: relativistically interacting processes” (2011) [arXiv: 1107.6019] [gr-qc]Google Scholar
  14. 14.
    R. Conte, et al., Eur. Phys. J. Special Topic 214, 325 (2012)Google Scholar
  15. 15.
    G. Deffuant, et al., Eur. Phys. J. Special Topic 214, 519 (2012)Google Scholar
  16. 16.
    T. Doering, S. Beckhaus, A. Schmidt, Proc. CHI 2009, 4627 (2009)Google Scholar
  17. 17.
    J.D. Farmer, et al., Eur. Phys. J. Special Topic 214, 295 (2012)Google Scholar
  18. 18.
    G. de la Flor, M. Jirotka, “Blurring the distinction between software design and work practice”, in Proc. 2nd International Symposium on End User Development (2009)Google Scholar
  19. 19.
    F. Grave, T. Müller, G. Wunner, T. Ertl, M. Buser, W.P. Schleich, “Visualization of the Gdel Spacetime”, in Proc. 4th High-End Visualization Workshop (2007), p. 62Google Scholar
  20. 20.
    S. Havlin, et al., Eur. Phys. J. Special Topic 214, 273 (2012)Google Scholar
  21. 21.
    D. Helbing, “The FuturIcT Knowledge Accelerator: Unleashing the Power of Information for a Sustainable Future”, CCSS Working Paper Series, CCSS-10-003 (2010) [arXiv:1004.4969v2]Google Scholar
  22. 22.
    D. Helbing, et al., Eur. Phys. J. Special Topic 214, 11 (2012)ADSGoogle Scholar
  23. 23.
    D. Helbing, Eur. Phys. J. Special Topic 214, 41 (2012)ADSGoogle Scholar
  24. 24.
    T. Hey, S. Tansley, K. Tolle (eds.), The Fourth Paradigm, (2009),
  25. 25.
    T. Hey, A.E. Trefethen, Future Generation Comput. Syst. 18, 1017 (2002)zbMATHCrossRefGoogle Scholar
  26. 26.
    T. Hey, A. Trefethen, “The Data Deluge: An e-Science Perspective”, in Grid Computing: Making the Global Infrastructure a Reality, edited by F. Berman, G. Fox, T. Hey (John Wiley & Sons, 2003)Google Scholar
  27. 27.
    P.M. Illari, F. Russo, J. Williamson (eds.), Causality in the Sciences (Oxford University Press, 2011)Google Scholar
  28. 28.
    J. Johnson, et al., Eur. Phys. J. Special Topic 214, 215 (2012)Google Scholar
  29. 29.
    S. Koch, H. Bosch, M. Giereth, T. Ertl, IEEE Trans. Visualization Computer Graph. 17, 557 (2011)CrossRefGoogle Scholar
  30. 30.
    D. Kossman, et al., Eur. Phys. J. Special Topic 214, 77 (2012)Google Scholar
  31. 31.
    M. San Miguel, et al., Eur. Phys. J. Special Topic 214, 245 (2012)Google Scholar
  32. 32.
    C. Müller, S. Frey, M. Strengert, C. Dachsbacher, T. Ertl, IEEE Trans. Visualization Computer Graph. 15, 1 (2009)CrossRefGoogle Scholar
  33. 33.
    M. Nielsen, Reinventing Discovery: The New Era of Networked Science (Princeton University Press, 2011)Google Scholar
  34. 34.
    J. Pearl, Causality: Models, Reasoning and Inference (Cambridge University Press, 2000)Google Scholar
  35. 35.
    J. Perelló, et al., Eur. Phys. J. Special Topic 214, 597 (2012)Google Scholar
  36. 36.
    F. Russo, Causality and Causal Modelling in the Social Sciences: Measuring Variations (Springer, 2010)Google Scholar
  37. 37.
    W.C. Salmon, Causality and Explanation (Oxford University Press, 1997)Google Scholar
  38. 38.
    E. Sosa, M. Tooley (eds.), Causation, Oxford Readings in Philosophy (Oxford University Press, 1993)Google Scholar
  39. 39.
    P. Spirtes, C. Glymour, R. Scheines, Causation, Prediction, and Search (The MIT Press, 2001)Google Scholar
  40. 40.
    G.K.L. Tam, H. Fang, A.J. Aubrey, P.W. Grant, P.L. Rosin, D. Marshall, M. Chen, Computer Graphics Forum 30, 901 (2011)CrossRefGoogle Scholar
  41. 41.
    J.J. Thomas, K.A. Cook (eds.), Illuminating the Path: The R&D Agenda for Visual Analytics (National Visualization and Analytics Center, 2005)Google Scholar

Copyright information

© EDP Sciences and Springer 2012

Authors and Affiliations

  • M. Chen
    • 1
  • T. Ertl
    • 2
  • M. Jirotka
    • 1
    • 3
  • A. Trefethen
    • 1
  • A. Schmidt
    • 2
  • B. Coecke
    • 3
  • R. Bañares-Alcántara
    • 4
  1. 1.Oxford e-Research CentreUniversity of OxfordOxfordUK
  2. 2.Visualization and Interactive Systems Institute, University of StuttgartStuttgartGermany
  3. 3.Department of Computer ScienceUniversity of OxfordOxfordUK
  4. 4.Department of Engineering ScienceUniversity of OxfordOxfordUK

Personalised recommendations