Advertisement

The European Physical Journal Special Topics

, Volume 213, Issue 1, pp 313–325 | Cite as

Recent developments and projects in SANS instrumentation at LLB-Orphée

  • G. ChaboussantEmail author
  • S. Désert
  • A. Brûlet
Review

Abstract

This article presents an overview of the recent developments in SANS and GISANS instrumentation at LLB-Orphée. SANS is a well-known technique, especially well adapted for research in material sciences, soft matter and nanosciences, which has proved to be particularly powerful to study complex systems, from nm to μm, taking full advantage of isotopic labelling and contrast variation methods. In this article, two instruments will be described in some details: TPA, the new VSANS (Very-Small Angle Neutron Scattering) instrument which is now fully functional and PA20, the new SANS spectrometer under construction, which will extend LLB’s capabilities in terms of SANS for magnetism with a polarized neutron option and Grazing Incidence SANS (GISANS).

Keywords

European Physical Journal Special Topic Steady State Reactor Slit Collimation Front Detector SANS Experiment 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Orphée is a pool type reactor 14-MW power compact, light-water moderated, core provides up to 3 × 1014 n.cm−2s−1 thermal flux in the surrounding heavy water reflector tank. The LLB has at its disposal two cold sources (20 K liquid hydrogen) and one hot source (1400 K graphite)Google Scholar
  2. 2.
    S.Désert, A.Gukasov, Neutron News 22, 14 (2011)CrossRefGoogle Scholar
  3. 3.
    S.Désert, V.Thévenot, J.Oberdisse, A.Brûlet, J. Appl. Cryst. 40, s471 (2007)CrossRefGoogle Scholar
  4. 4.
    S.Désert, V.Thévenot, A.Gabriel, P.Permingeat, J.Oberdisse, A.Brûlet, J. Appl. Cryst. 40, 945 (2007)CrossRefGoogle Scholar
  5. 5.
    see LLB spectrometers web site at: www-llb.cea.fr
  6. 6.
    M.Shibayama, Poly. J. 43, 18 (2011)CrossRefGoogle Scholar
  7. 7.
    T.Karino, Y.Okumura, K.Ito, et al., Macromolecules 37, 6177 (2004)ADSCrossRefGoogle Scholar
  8. 8.
    A.Michels, J.Weissmüller, Rep. Prog. Phys. 71, 066501 (2008)ADSCrossRefGoogle Scholar
  9. 9.
    S.Sankar, et al., J. Mag. Magn. Mat. 221, 1 (2000)ADSCrossRefGoogle Scholar
  10. 10.
    R.Gilles, et al., Physica B 385, 1174 (2006)ADSCrossRefGoogle Scholar
  11. 11.
    R.Gilles, A.Ostermann, W.Petry, 2007, J. Appl. Cryst., doi:  10.1107/S0021889807006310
  12. 12.
    C.D.Dewhurst, Meas. Sci. Technol. 19, 034007 (2008)ADSCrossRefGoogle Scholar
  13. 13.
    F.Cousin, J.Gummel, D.Ung, et al., Langmuir 21, 9675 (2005)CrossRefGoogle Scholar
  14. 14.
    F.Gayet, C.El Kalamouni, P.Lavedan, J.-D.Marty, A.Brûlet, N.Lauth de Viguerie, Langmuir 25, 9741 (2009)CrossRefGoogle Scholar
  15. 15.
    W.Agut, A.Brûlet, C.Schatz, D.Taton, S.Lecommandoux, Langmuir 26, 10546 (2010)CrossRefGoogle Scholar
  16. 16.
    Y.B.Melnichenko, G.D.Wignall, J. Appl. Phys. 102, 021101 (2007)ADSCrossRefGoogle Scholar
  17. 17.
    A.Wiedenmann, U.Keiderling, R.P.May, C.Dewhurst, Physica B 385, 453 (2006)ADSCrossRefGoogle Scholar
  18. 18.
    I.Schmidt, F.Cousin, et al., Biomacromolecules 10, 1346 (2009)CrossRefGoogle Scholar
  19. 19.
    C.Sanson, C.Schatz, J.-F.Le Meins, A.Brûlet, A.Soum, S.Lecommandoux, Langmuir 26, 2751 (2010)CrossRefGoogle Scholar
  20. 20.
    C.Sanson, et al., ACS NANO 5, 1122 (2011)CrossRefGoogle Scholar
  21. 21.
    J.Jestin, F.Cousin, I.Dubois, et al., Adv. Mater. 20, 2533 (2008)CrossRefGoogle Scholar
  22. 22.
    J.Oberdisse, B.Deme, Macromolecules 35, (2002)Google Scholar
  23. 23.
    N.Jouault, F.Dalmas, S.Said, et al., Physical Review E 82, 031801 (2010)ADSCrossRefGoogle Scholar
  24. 24.
    M.H.Mathon, Y.de Carlan, G.Geoffroy, et al., J. Nucl. Mater. 312, 236 (2003)ADSCrossRefGoogle Scholar
  25. 25.
    A.Brûlet, et al., J. Appl. Cryst. 41, 161 (2008)CrossRefGoogle Scholar
  26. 26.
    A.Wiedenmann, J. Appl. Cryst. 33, 428 (2000)CrossRefGoogle Scholar
  27. 27.
    A.Wiedenmann, et al., Phys. Rev. Lett. 97, 057202 (2006)ADSCrossRefGoogle Scholar
  28. 28.
    A.Hamann, et al., Phys. Rev. Lett. 107, 037207 (2011)ADSCrossRefGoogle Scholar
  29. 29.
    A.Pautrat, M.Aburas, C.Simon, et al., Phys. Rev. B 79, 184511 (2009)ADSCrossRefGoogle Scholar
  30. 30.
    D.Saurel, C.Simon, A.Pautrat, et al., Phys. Rev. B 82, 054427 (2010)ADSCrossRefGoogle Scholar
  31. 31.
    A.Wiedenmann, et al., Phys. Rev. B 77, 184417 (2008)ADSCrossRefGoogle Scholar
  32. 32.
    Th.Maurer, et al., J. Appl. Phys. 110, 123924 (2011)ADSCrossRefGoogle Scholar
  33. 33.
    G.Chaboussant, S.Désert, P.Lavie, A.Brûlet, J. Phys.: Conf. Series 340, 012002 (2012)ADSCrossRefGoogle Scholar
  34. 34.
    F.Mezei, “Neutron Optical Devices”, SPIE Conferences Proceedings, edited by C.F.Majkrzak, Vol. 983 (SPIE, 1988), p. 10Google Scholar
  35. 35.
    P.Böni, W.Munzer, A.Ostermann, Physica B 404, 2620 (2009)ADSCrossRefGoogle Scholar
  36. 36.
    J.Stahn, D.Clemens, Appl. Phys. A: Mat. Sci. Proc. 74, s1532 (2002)ADSCrossRefGoogle Scholar
  37. 37.
    M.James, A.Nelson, F.Klose, Neutron News 20, 21 (2009)CrossRefGoogle Scholar
  38. 38.
    P.Böni, D.Clemens, K.M.Senthil, S.Tixier, Physica B: Cond. Matt. 241-243, 1060 (1997)CrossRefGoogle Scholar
  39. 39.
    C.J.linka, J.M.Rowe, J.G.La Rock, J. Appl. Cryst. 19, 427 (1986)CrossRefGoogle Scholar
  40. 40.
    A.Len, G.Pépy, L.Rosta, Physica B 350, e771 (2004)ADSCrossRefGoogle Scholar
  41. 41.
    W.G.Bouwman, C.P.Duif, J.Plomp, et al., Physica B-Cond. Matt. 406, 2357 (2011)ADSCrossRefGoogle Scholar
  42. 42.
    S.M.Choi, et al., J. Appl. Cryst. 33, 793 (2000)ADSCrossRefGoogle Scholar
  43. 43.
    M.R.Eskildsen, P.L.Gammel, E.D.Isaacs, Nature 391, 563 (1998)ADSCrossRefGoogle Scholar
  44. 44.
    F.Ott, Modern Developments in X-Ray and Neutron Optics, Springer Series in Optical Sciences 137/2008, 113 (2008)ADSCrossRefGoogle Scholar
  45. 45.
    P.Muller-Buschbaum, et al., Physica B 283, 53 (2000)ADSCrossRefGoogle Scholar
  46. 46.
    P.Muller-Buschbaum, et al., Physica B 350, 207 (2004)ADSCrossRefGoogle Scholar
  47. 47.
    F.Cousin, J.Jestin, G.Chaboussant, et al., Eur. Phys. J. Special Topics 167, 177 (2009)ADSCrossRefGoogle Scholar
  48. 48.
    R.Steitz, P.Muller-Buschbaum, et al., Europhys. Lett. 67, 962 (2004)ADSCrossRefGoogle Scholar
  49. 49.
    V.Leiner, H.Zabel, Phys. Rev. Lett. 92, 255501 (2004)ADSCrossRefGoogle Scholar
  50. 50.
    M.Wolff, A.Magerl, H.Zabel, Eur. Phys. J. E 16, 141 (2005)CrossRefGoogle Scholar
  51. 51.
    V.Lauter-Pasyuk, et al., Langmuir 19, 7783 (2003)CrossRefGoogle Scholar
  52. 52.
    W.A.Hamilton, Curr. Opinion Coll. Interf. Sci. 9, 390 (2005)CrossRefGoogle Scholar
  53. 53.
    G.Renaud, R.Lazzari, F.Leroy, Surf. Sci. Reports 64, 255 (2009)ADSCrossRefGoogle Scholar
  54. 54.
    J.P.Cotton, J.Teixeira, SANS, Physica B 136, 103 (1986)Google Scholar
  55. 55.
    E.Raspaud, D.Lairez, M.Adam, J.P.Carton, Macromolecules 29, 1269 (1996)ADSCrossRefGoogle Scholar
  56. 56.
    A.Pautrat, A.Brûlet, C.Simon, P.Mathieu, Phys. Rev. Lett. (2012) (to appear)Google Scholar

Copyright information

© EDP Sciences and Springer 2012

Authors and Affiliations

  1. 1.Laboratoire Léon Brillouin, UMR12 CNRS-CEA, CEA SaclayGif-sur-YvetteFrance

Personalised recommendations