Advertisement

The European Physical Journal Special Topics

, Volume 213, Issue 1, pp 195–211 | Cite as

Neutrons for fuel cell membranes: Structure, sorption and transport properties

  • S. Lyonnard
  • G. Gebel
Review

Abstract

A molecular level understanding of structure and transport properties in fuel cell ionomer membranes is essential for designing new electrolytes with improved performance. Scattering techniques are suited tools for this purpose. In particular, neutron scattering, which has been extensively used in hydrogen-containing systems, is well adapted to investigate water-dependent complex polymeric morphologies. We report Small-Angle Neutron Scattering (SANS) studies on different types of fuel cell polymers: perfluorinated, radiation-grafted and sulfonated polyphosphazene membranes. We show that contrast variation methods can be efficiently employed to provide new insights on membrane microstructure and reveal ionic condensation effects. Neutrons have been used also as non-intrusive diagnosis tool to probe water properties and distribution inside membranes. Recently, in-situ neutronography and SANS experiments on operating fuel cells have been reported. In-plane cartography of water distribution at the surface of bipolar plates and water profiles across membrane thickness have been obtained and studied as a function of operating conditions. The last section of the article is devoted to the use of Quasi-Elastic Neutron Scattering to study water dynamics at molecular scale. We show that analysis with an appropriate sophisticated diffusion model allows to extract diffusion coefficients, characteristic times and length-scales of molecular motions. This quantitative information is fruitfully integrated in multi-scale modelling and usefully compared with numerical simulations. QENS also permits to compare alternative polymers and relate dynamical properties to chemical composition and membrane nanostructure.

Keywords

Fuel Cell European Physical Journal Special Topic Proton Exchange Membrane Fuel Cell Bipolar Plate Quasielastic Neutron 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Advances in Polymer Science (Springer-Verlag, Berlin, 2008)Google Scholar
  2. 2.
    J.A.Kerres, J. Membrane Sci. 185, 3 (2001)CrossRefGoogle Scholar
  3. 3.
    B.Smitha, S.Sridhar, A.A.Khan, J. Membrane Sci. 259, 10 (2005)CrossRefGoogle Scholar
  4. 4.
    M.A.Hickner, B.S.Pivovar, Fuel Cells 5, 213 (2005)CrossRefGoogle Scholar
  5. 5.
    Y.Yang, S.Holdcroft, Fuel Cells 5, 171 (2005)CrossRefGoogle Scholar
  6. 6.
    D.J.Jones, J.Rozières, Advances in Polymer Science, Fuel Cell I, edited by G.G.Scherer, Vol. 215 (Springer-Verlag, Berlin, 2008), p. 219Google Scholar
  7. 7.
    T.J.Peckham, S.Holdcroft, Adv. Materials 22, 4667 (2010)CrossRefGoogle Scholar
  8. 8.
    G.Gebel, O.Diat, Fuel Cells 5, 261 (2005)CrossRefGoogle Scholar
  9. 9.
    N.Takimoto, L.Wu, A.Ohira, Y.Takeoka, M.Rikukawa, Polymer 50, 534 (2009)CrossRefGoogle Scholar
  10. 10.
    K.D.Kreuer, S.J.Paddison, E.Spohr, M.Schuster, Chem. Rev. 104, 4637 (2004)CrossRefGoogle Scholar
  11. 11.
    M.Eikerling, A.A.Kornyshev, A.R.Kucernak, Physics Today 59, 38 (2006)CrossRefGoogle Scholar
  12. 12.
    M.Saito, N.Arimura, K.Hayamizu, T.Okada, J. Phys. Chem. B 108, 16064 (2004)CrossRefGoogle Scholar
  13. 13.
    S.Rieberer, K.H.Norian, Ultramicroscopy 41, 225 (1992)CrossRefGoogle Scholar
  14. 14.
    A.Lehmani, S.Durand-Vidal, P.Turq, J. Appl. Polymer Sci. 68, 503 (1998)CrossRefGoogle Scholar
  15. 15.
    M.V.Mirkin, Analytical Chem. 68, A177 (1996)CrossRefGoogle Scholar
  16. 16.
    P.Bertoncello, I.Ciani, F.Li, P.R.Unwin, Langmuir 22, 10380 (2006)CrossRefGoogle Scholar
  17. 17.
    E.Aleksandrova, R.Hiesgen, K.A.Friedrich, E.Roduner, Phys. Chem. Chem. Phys. 9, 2735 (2007)CrossRefGoogle Scholar
  18. 18.
    K.A.Mauritz, R.B.Moore, Chem. Rev. 104, 4535 (2004)CrossRefGoogle Scholar
  19. 19.
    T.D.Gierke, G.E.Munn, F.C.Wilson, J. Poly. Sci. 19, 1687 (1981)Google Scholar
  20. 20.
    J.Halim, F.N.Buchi, O.Haas, M.Stamm, G.G.Scherer, Electrochim. Acta 39, 1303 (1994)CrossRefGoogle Scholar
  21. 21.
    H.G.Haubold, T.Vad, H.Jungbluth, P.Hiller, Electrochim. Acta 46, 1559 (2001)CrossRefGoogle Scholar
  22. 22.
    G.Gebel, J.Lambard, Macromolecules 30, 7914 (1997)ADSCrossRefGoogle Scholar
  23. 23.
    G.Gebel, R.B.Moore, Macromolecules 33, 4850 (2000)ADSCrossRefGoogle Scholar
  24. 24.
    A.-L.Rollet, G.Gebel, J.-P.Simonin, P.Turq, J. Polym. Sci., Part B: Polym. Phys. 39, 548 (2001)ADSCrossRefGoogle Scholar
  25. 25.
    A.-L.Rollet, O.Diat, G.Gebel, J. Phys. Chem. B 106, 3033 (2002)CrossRefGoogle Scholar
  26. 26.
    L.Rubatat, G.Gebel, O.Diat, Macromolecules 37, 7772 (2004)ADSCrossRefGoogle Scholar
  27. 27.
    L.Rubatat, A.-L.Rollet, G.Gebel, O.Diat, Macromolecules 35, 4050 (2002)ADSCrossRefGoogle Scholar
  28. 28.
    Y.K.Tovbin, Y.A.Dyakov, N.F.Vasyutkin, Z. Fizicheskoi Khim. 67, 2122 (1993)Google Scholar
  29. 29.
    M.H.Litt, Abs. Papers Amer. Chem. Soc. 213, 33 (1997)Google Scholar
  30. 30.
    K.D.Kreuer, J. Memb. Sci. 185, 29 (2001)CrossRefGoogle Scholar
  31. 31.
    K.Schmidt-Rohr, Q.Chen, Nat. Mater. 7, 75 (2008)ADSCrossRefGoogle Scholar
  32. 32.
    J.A.Elliott, S.J.Paddison, Phys. Chem. Chem. Phys. 9, 2602 (2007)CrossRefGoogle Scholar
  33. 33.
    S.J.Paddison, J.A.Elliott, Phys. Chem. Chem. Phys. 8, 2193 (2006)CrossRefGoogle Scholar
  34. 34.
    X.Y.Zhou, Z.Chen, F.Delgado, D.Brenner, R.Srivastava, J. Electrochem. Soc. 154, B82 (2007)CrossRefGoogle Scholar
  35. 35.
    N.Idupulapati, R.Devanathan, M.Dupuis, J. Phys. Chem. A 114, 6904 (2010)CrossRefGoogle Scholar
  36. 36.
    S.Urata, J.Irisawa, A.Takada, J. Phys. Chem. B 109, 4269 (2005)CrossRefGoogle Scholar
  37. 37.
    S.T.Cui, J. W.Liu, M.E.Selvan, S.J.Paddison, D.J.Keffer, B.J.Edwards, J. Phys. Chem. B 112, 13273 (2008)CrossRefGoogle Scholar
  38. 38.
    J.W.Liu, N.Suraweera, D.J.Keffer, S.T.Cui, S.J.Paddison, J. Phys. Chem. C 114, 11279 (2010)CrossRefGoogle Scholar
  39. 39.
    R.Devanathan, A.Venkatnathan, M.Dupuis, J. Phys. Chem. B 111, 8069 (2007)CrossRefGoogle Scholar
  40. 40.
    D.Brandell, J.Karo, A.Liivat, J.O.Thomas, J. Molec. Modeling 13, 1039 (2007)CrossRefGoogle Scholar
  41. 41.
    D.S.Wu, S.J.Paddison, J.A.Elliott, S.J.Hamrock, Langmuir 26, 14308 (2010)CrossRefGoogle Scholar
  42. 42.
    J.T.Wescott, Y.Qi, L.Subramanian, T.W.Capehart, J. Chem. Phys. 124, 14 (2006)CrossRefGoogle Scholar
  43. 43.
    K.Malek, M.Eikerling, Q.P.Wang, Z.S.Liu, S.Otsuka, K.Akizuki, M.Abe, J. Chem. Phys. 129 (2008)Google Scholar
  44. 44.
    C.K.Knox, G.A.Voth, J. Phys. Chem. B 114, 3205 (2010)CrossRefGoogle Scholar
  45. 45.
    S.J.Peighambardoust, S.Rowshanzamir, M.Amjadi, Int. J. Hydro. Energy 35, 9349 (2010)CrossRefGoogle Scholar
  46. 46.
    Ionomers, edited by M.R. Tant, K.A.Mauritz, W.G.L. (Blackie Academics & Professional, London, 1997)Google Scholar
  47. 47.
    S.A.Gursel, L.Gubler, B.Gupta, G.G.Scherer, Fuel Cells I 215, 157 (2008)CrossRefGoogle Scholar
  48. 48.
    M.Elomaa, S.Hietala, M.Paronen, N.Walsby, K.Jokela, R.Serimaa, M.Torkkeli, T.Lehtinen, G.Sundholm, F.Sundholm, J. Mater. Chem. 10, 2678 (2000)CrossRefGoogle Scholar
  49. 49.
    S.Hietala, S.Holmberg, M.Karjalainen, J.Nasman, M.Paronen, R.Serimaa, F.Sundholm, S.Vahvaselka, J. Mater. Chem. 7, 721 (1997)CrossRefGoogle Scholar
  50. 50.
    S.Hietala, S.Holmberg, J.Nasman, D.Ostrovskii, M.Paronen, R.Serimaa, F.Sundholm, L.Torell, M.Torkkeli, Angew. Makromolek. Chem. 253, 151 (1997)CrossRefGoogle Scholar
  51. 51.
    G.Gebel, E.Ottomani, J.J.Allegraud, N.Betz, A.LeMoel, Nucl. Instr. Meth. Phys. Res. Sect. B-Beam Inter. Mater. Atoms 105, 145 (1995)ADSCrossRefGoogle Scholar
  52. 52.
    G.Maier, J.Meier-Haack, Advances in Polymer Science, Fuel Cells I II, edited by G.G.Scherer, Vol. 216 (Springer-Verlag, Berlin, 2008), p. 1Google Scholar
  53. 53.
    R.Wycisk, P.N.Pintauro, Fuel Cells II 216, 157 (2008)CrossRefGoogle Scholar
  54. 54.
    V.Delhorbe, X.Thiry, C.Cailleteau, E.Mourier, M.Bathfield, L.Chikh, O.Fichet, B.Ameduri, R.Mercier, S.Vidal, L.Augier, E.Espuche, F.Gouanvé, G.Gebel, A.Morin, J. Membr. Sci. 389, 57 (2012)CrossRefGoogle Scholar
  55. 55.
    M.Eikerling, A.A.Kornyshev, E.Spohr, in Advances in polymer Science, Fuel Cells I, edited by G.G.Scherer, Vol. 215 (Springer-Verlag Berlin, 2008), p. 15Google Scholar
  56. 56.
    D.J.Ludlow, et al., J. Power Sources 162, 271 (2006)CrossRefGoogle Scholar
  57. 57.
    S.Tsushima, S.Hirai, Progr. Energy Combustion Sci. 37, 204 (2011)CrossRefGoogle Scholar
  58. 58.
    R.Mosdale, P.Stevens, F.Novel-Cattin, B.Loppinet, G.Gebel, P.Aldebert, M.Pineri, presented at the European Space Power Conference, Florence, 1991 (unpublished)Google Scholar
  59. 59.
    R.Mosdale, G.Gebel, M.Pineri, J. Membr. Sci. 118, 269 (1996)CrossRefGoogle Scholar
  60. 60.
    G.Gebel, O.Diat, S.Escribano, R.Mosdale, J. Power Sources 179, 132 (2008)CrossRefGoogle Scholar
  61. 61.
    X.Feina, O.Diat, G.Gebel, A.Morin, J. Electrochem. Soc. B1389 (2007)Google Scholar
  62. 62.
    A.Morin, F.N.Xu, G.Gebel, O.Diat, Int. J. Hydro. Energy 36, 3096 (2011)CrossRefGoogle Scholar
  63. 63.
    Z.Peng, A.Morin, G.Gebel, S.Lyonnard (to be published)Google Scholar
  64. 64.
    H.Iwase, S.Koizumi, H.Iikura, M.Matsubayashi, D.Yamaguchi, Y.Maekawa, T.Hashimoto, Nucl. Instr. Meth. Phys. Res. Sect. a-Accelerators Spectrometers Detectors Associated Equipment 605, 95 (2009)ADSCrossRefGoogle Scholar
  65. 65.
    A.Putra, H.Iwase, D.Yamaguchi, S.Koizumi, Y.Maekawa, M.Matsubayashi, T.Hashimoto, XIV Int. Conf. Small-Angle Scatt. (Sas09) 247 (2010)Google Scholar
  66. 66.
    M.Bée, Quasielastic neutron scattering (Adam Hilger, Bristol and Philadelphia, 1988)Google Scholar
  67. 67.
    M.C.Bellissent-Funel, Euro. Phys. J. E 12, 83 (2003)CrossRefGoogle Scholar
  68. 68.
    Presented at the Physica B, 1998 (unpublished)Google Scholar
  69. 69.
    A.J.Dianoux, M.Pineri, F.Volino, Mol. Phys. 46, 129 (1982)ADSCrossRefGoogle Scholar
  70. 70.
    F.Volino, M.Pineri, A.J.Dianoux, A.De Geyer, J. Polym. Sci. 20, 481 (1982)Google Scholar
  71. 71.
    A.M.Pivovar, B.S.Pivovar, J. Phys. Chem. B 109, 785 (2005)CrossRefGoogle Scholar
  72. 72.
    A.Paciaroni, J. Phys. Chem. B 110, 13769 (2006)CrossRefGoogle Scholar
  73. 73.
    J.C.Perrin, S.Lyonnard, F.Volino, J. Phys. Chem. C 111, 3393 (2007)CrossRefGoogle Scholar
  74. 74.
    F.Volino, J.C.Perrin, S.Lyonnard, J. Phys. Chem. B 110, 11217 (2006)CrossRefGoogle Scholar
  75. 75.
    J.C.Perrin, S.Lyonnard, F.Volino, A.Guillermo, Eur. Phys. J. Special Topics 141, 57 (2007)CrossRefGoogle Scholar
  76. 76.
    S.Lyonnard, Q.Berrod, B.A.Bruning, G.Gebel, A.Guillermo, H.Ftouni, J.Ollivier, B.Frick, Eur. Phys. J. Special Topics 189, 205 (2010)ADSCrossRefGoogle Scholar
  77. 77.
    J.C.Perrin, S.Lyonnard, A.Guillermo, P.Levitz, Fuel Cells 6, 5 (2006)CrossRefGoogle Scholar
  78. 78.
    J.C.Perrin, S.Lyonnard, A.Guillermo, P.Levitz, Magn. Reson. Imag. 25, 501 (2007)CrossRefGoogle Scholar
  79. 79.
    J.C.Perrin, S.Lyonnard, A.Guillermo, P.Levitz, J. Phys. Chem. B 110, 5439 (2006)CrossRefGoogle Scholar
  80. 80.
    C.Marestin, G.Gebel, O.Diat, R.Mercier, in Advances in polymer Science, Fuel Cells II, edited by G.G.Scherer, Vol. 216 (Springer-Verlag, Berlin, 2008), p. 185Google Scholar
  81. 81.
    D.Jamróz, Y.Maréchal, J. Phys. Chem. B 109, 19664 (2005)CrossRefGoogle Scholar
  82. 82.
    J.-F.Blachot, O.Diat, J.-L.Putaux, A.-L.Rollet, L.Rubatat, C.Vallois, M.Müller, G.Gebel, J. Memb. Sci. 214, 31 (2003)CrossRefGoogle Scholar
  83. 83.
    N.Cornet, G.Beaudoing, G.Gebel, Sep. Purif. Technol. 22–23, 681 (2001)CrossRefGoogle Scholar
  84. 84.
    O.Diat, J.-F.Blachot, A.-L.Rollet, L.Rubatat, C.Vallois, M.Müller, G.Gebel, J. Phys. IV (France) 12, 2 (2002)CrossRefGoogle Scholar
  85. 85.
    S.Lyonnard, J.C.Perrin, A.Guillermo, G.Gebel (to be published)Google Scholar

Copyright information

© EDP Sciences and Springer 2012

Authors and Affiliations

  • S. Lyonnard
    • 1
  • G. Gebel
    • 1
  1. 1.Structure et Propriétés d’Architectures Moléculaires, UMR 5819 (CEA-CNRS-UJF), Laboratoire des Polymères Conducteurs Ioniques, INAC/SPrAM, CEA-GrenobleGrenoble Cedex 9France

Personalised recommendations