Advertisement

The European Physical Journal Special Topics

, Volume 213, Issue 1, pp 77–102 | Cite as

Unravelling low lying phonons and vibrations of carbon nanostructures: The contribution of inelastic and quasi-elastic neutron scattering

  • S. RolsEmail author
  • C. Bousige
  • J. Cambedouzou
  • P. Launois
  • J.-L. Sauvajol
  • H. Schober
  • V.N. Agafonov
  • V.A. Davydov
  • J. Ollivier
Review

Abstract

We illustrate the contribution of inelastic neutron scattering to the understanding of the vibrations and lattice excitations of fullerenes and carbon nanotubes, through some significant experimental results. Particular emphasis is placed on the study of intra and inter-molecular modes of fullerene C60, as well as on the order/disorder transition characteristic of these molecules. In addition, a significant part of this article is dedicated to various intercalation compounds of fullerenes and carbon nanotubes, such as the co-crystal “fullerene-cubane” consisting of an arrangement of molecules of spherical and cubic shapes, or the compound called “peapods”, in which fullerene C60 are inserted inside carbon nanotubes.

Keywords

Carbon Nanotubes Fullerene Dispersion Curve European Physical Journal Special Topic Cubane 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    H.W.Kroto, et al., Nature 318, 163 (1985)ADSCrossRefGoogle Scholar
  2. 2.
    S.Iijima, Nature 354, 56 (1991)ADSCrossRefGoogle Scholar
  3. 3.
    V.A.Davydov, et al., Phys. Rev. B 61, 1936 (2000)CrossRefGoogle Scholar
  4. 4.
    J.R.D.Copley, Neutron News 4, 20 (1993)CrossRefGoogle Scholar
  5. 5.
    P.Launois, et al., Int. J. Mod. Phys. B 13, 253 (1999)ADSCrossRefGoogle Scholar
  6. 6.
    R.Tycko, et al., Phys. Rev. Lett. 67, 1886 (1991)ADSCrossRefGoogle Scholar
  7. 7.
    P.Launois, et al., Phys. Rev. B 52, 5414 (1995)ADSCrossRefGoogle Scholar
  8. 8.
    D.A.Neumann, et al., Phys. Rev. Lett. 67, 3808 (1991)ADSCrossRefGoogle Scholar
  9. 9.
    J.Yu, et al., App. Phys. Lett. 63, 3152 (1993)ADSCrossRefGoogle Scholar
  10. 10.
    R.L.Capelletti, et al., Phys. Rev. Lett. 66, 3261 (1991)ADSCrossRefGoogle Scholar
  11. 11.
    C.Coulombeau, et al., J. Phys. Chem. 96, 22 (1992)CrossRefGoogle Scholar
  12. 12.
    K.Prassides, et al., Chem. Phys. Lett. 187, 455 (1991)ADSCrossRefGoogle Scholar
  13. 13.
  14. 14.
    L.Pintschovius, S.L.Chaplot, Z. Phys. B 98, 527 (1995)ADSCrossRefGoogle Scholar
  15. 15.
    L.Pintschovius, et al., Phys. Rev. Lett. 69, 2662 (1992)ADSCrossRefGoogle Scholar
  16. 16.
    L.Pintschovius, et al., Rep. Prog. Phys. 59, 473 (1996)ADSCrossRefGoogle Scholar
  17. 17.
    D.Lamoen and K.H.Michel. Phys. Rev. B 48, 807 (1993)ADSCrossRefGoogle Scholar
  18. 18.
    B.Renker, et al., Z. Phys. B 90, 325 (1993)ADSCrossRefGoogle Scholar
  19. 19.
    H.Schober, et al., Phys. Rev. B 59, 3287 (1999)ADSCrossRefGoogle Scholar
  20. 20.
    W.I.F.David, et al., Europhys. Lett. 18, 219 (1992)ADSCrossRefGoogle Scholar
  21. 21.
    S.Pekker, et al., Nature Mat. 4, 764 (2005)ADSCrossRefGoogle Scholar
  22. 22.
    T.Yildirim, et al., Chem. Phys. Lett. 309, 234 (1999)ADSCrossRefGoogle Scholar
  23. 23.
    C.Bousige, et al., Phys. Rev. B 82, 195413 (2010)ADSCrossRefGoogle Scholar
  24. 24.
    N. M.Nemes, et al., J. Phys. Chem. B 113, 2042 (2008)CrossRefGoogle Scholar
  25. 25.
    W.Marshall, Theory of Thermal Neutron Scattering (Clarendon Press, 1971)Google Scholar
  26. 26.
    A.Loiseau, P.Launois, et al., Understanding Carbon Nanotubes Lect. Notes Phys. 677, (2006)Google Scholar
  27. 27.
    L.Henrard, et al., Eur. Phys. J. B 13, 661 (1999)ADSCrossRefGoogle Scholar
  28. 28.
    L.-H.Ye, et al., Phys. Rev. B 69, 235409 (2004)ADSCrossRefGoogle Scholar
  29. 29.
    S.Rols, et al., eur. Phys. J. B 18, 201 (2000)ADSCrossRefGoogle Scholar
  30. 30.
    S.Rols, et al., Phys. Rev. Lett. 85, 5222 (2000)ADSCrossRefGoogle Scholar
  31. 31.
    J.-L.Sauvajol, et al., Carbon 40, 1697 (2002)CrossRefGoogle Scholar
  32. 32.
    J.C.Lasjaunias, et al., Phys. Rev. Lett. 91, 25901 (2003)ADSCrossRefGoogle Scholar
  33. 33.
    J.C.Lasjaunias. C.R. Physique 4, 1047 (2003)ADSCrossRefGoogle Scholar
  34. 34.
    B.W.Smith, et al., Nature 396, 323 (1998)ADSCrossRefGoogle Scholar
  35. 35.
    B.Burteau, et al., Chem. Phys. Lett. 310, 21 (1999)ADSCrossRefGoogle Scholar
  36. 36.
    H.Kataura, et al., Synth. Met. 121, 11951196 (2001)CrossRefGoogle Scholar
  37. 37.
    J.Cambedouzou, et al., Eur. J. B 42, 31 (2004)ADSCrossRefGoogle Scholar
  38. 38.
    E.H.Lieb, D.C.Mattis, Mathematical physics in one dimension: exactly soluble models of interacting particles (Academic Press, 1966)Google Scholar
  39. 39.
    S.Bandow, et al., Chem. Phys. Lett. 337, 48 (2001)ADSCrossRefGoogle Scholar
  40. 40.
    G.L.Squires, Thermal neutron scattering (Cambridge University Press, Cambridge, 1978)Google Scholar
  41. 41.
    S.Rols, et al., Phys. Rev. Lett. 101, 65507 (2008)ADSCrossRefGoogle Scholar
  42. 42.
    S.Kawasaki, et al., Carbon 43, 37 (2005)CrossRefGoogle Scholar
  43. 43.
    M.Chorro, et al., Phys. Rev. B 74, 205425 (2006)ADSCrossRefGoogle Scholar
  44. 44.
    V.J.Emery, J.D.Axe, Phys. Rev. Lett. 40, 1507 (1978)ADSCrossRefGoogle Scholar
  45. 45.
    I.U.Heilmann, et al., Phys. Rev. B 20, 751 (1979)ADSMathSciNetCrossRefGoogle Scholar
  46. 46.
    Y.M.Soifer, et al., J. Al. Comp. 310, 292 (2000)CrossRefGoogle Scholar
  47. 47.
    C.Carraro. Phys. Rev. B 61, 16351 (2000)ADSCrossRefGoogle Scholar
  48. 48.
    M.Mercedes Calbi, et al., Phys. Rev. B 67, 205417 (2003)ADSCrossRefGoogle Scholar
  49. 49.
    K.H.Michel, et al., Phys. Rev. Lett. 95, 185506 (2005)ADSCrossRefGoogle Scholar
  50. 50.
    K.H.Michel, et al., Eur. Phys. J. B 48, 113 (2005)ADSCrossRefGoogle Scholar
  51. 51.
    C.Bousige, et al. (submitted)Google Scholar

Copyright information

© EDP Sciences and Springer 2012

Authors and Affiliations

  • S. Rols
    • 1
    Email author
  • C. Bousige
    • 1
    • 2
  • J. Cambedouzou
    • 2
  • P. Launois
    • 2
  • J.-L. Sauvajol
    • 3
  • H. Schober
    • 1
  • V.N. Agafonov
    • 4
  • V.A. Davydov
    • 5
  • J. Ollivier
    • 1
  1. 1.Institut Laue LangevinGrenoble Cedex 9France
  2. 2.Laboratoire de Physique des Solides, UMR CNRS 8502, Université Paris-SudOrsayFrance
  3. 3.Laboratoire Charles Coulomb, UMR 5221MontpellierFrance
  4. 4.Laboratoire d’Électrodynamique des Matériaux Avancés, UMR CNRS-CEA 6157, Université François RabelaisToursFrance
  5. 5.L. F. Vereshchagin Institute for High Pressure Physics of the RASTroitsk, Moscow regionRussia

Personalised recommendations