The European Physical Journal Special Topics

, Volume 212, Issue 1, pp 115–120

Competitors’ communities and taxonomy of products according to export fluxes

  • M. Cristelli
  • A. Tacchella
  • A. Gabrielli
  • L. Pietronero
  • A. Scala
  • G. Caldarelli
Regular Article

Abstract

In this paper we use Complex Network Theory to quantitatively characterize and synthetically describe the complexity of trade between nations. In particular, we focus our attention on export fluxes. Starting from the bipartite countries-products network defined by export fluxes, we define two complementary graphs projecting the original network on countries and products respectively. We define, in both cases, a distance matrix amongst countries and products. Specifically, two countries are similar if they export similar products. This relationship can be quantified by building the Minimum Spanning Tree and the Minimum Spanning Forest from the distance matrices for products and countries. Through this simple and scalable method we are also able to carry out a community analysis. It is not gone unnoticed that in this way we can produce an effective categorization for products providing several advantages with respect to traditional classifications of COMTRADE [1]. Finally, the forests of countries allows for the detection of competitors’ community and for the analysis of the evolution of these communities.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
  2. 2.
    G. Caldarelli,Scale-Free Networks (Oxford University Press, Oxford 2007)Google Scholar
  3. 3.
    F. Schweitzer, G. Fagiolo, D. Sornette, F. Vega-Redondo, A. Vespignani, Science 325, 422 (2009)MathSciNetADSMATHGoogle Scholar
  4. 4.
    N. Johnson, T. Lux, Nature 469, 302 (2011)ADSCrossRefGoogle Scholar
  5. 5.
    C.A. Hidalgo, B. Klinger, A.-L. Barabási, R. Hausmann, Science 317, 482 (2007)ADSCrossRefGoogle Scholar
  6. 6.
    C.A. Hidalgo, R. Hausmann, Proc. Nation. Acad. Sci. (USA) 106, 10570 (2009)ADSCrossRefGoogle Scholar
  7. 7.
    G. Caldarelli, M. Cristelli, A. Gabrielli, L. Pietronero, A. Scala, A. Tacchella, http://arxiv.org/abs/1108.2590
  8. 8.
    B. Balassa, Trade Liberalization and Revealed Comparative Advantage, Manchester School 33, 99123 (1965)Google Scholar
  9. 9.
    R.N. Mantegna, Eur. Phys. J. B 11, 193 (1999)ADSCrossRefGoogle Scholar
  10. 10.
    G. Bonanno, G. Caldarelli, F. Lillo, R.N. Mantegna, Phys. Rev. E 68, 046130 (2003)ADSCrossRefGoogle Scholar
  11. 11.
    G. Bonanno, G. Caldarelli, F. Lillo, S. Micciché, N. Vandewalle, R.N. Mantegna, Eur. Phys. J. B 38, 363371 (2004)CrossRefGoogle Scholar
  12. 12.
    S. Battiston, D. Delli Gatti, M. Gallegati, B. Greenwald, J.E. Stiglitz, J. Econo. Dyn. Cont. 31 20612084 (2007)Google Scholar
  13. 13.
    G. De Masi, G. Iori, G. Caldarelli, Phys. Rev. E 74, 66112 (2006)CrossRefGoogle Scholar
  14. 14.
    G. Caldarelli, M. Cristelli, A. Gabrielli, L. Pietronero, A. Tacchella, http://arxiv.org/abs/1108.2590Google Scholar
  15. 15.
    K.-M. Lee, J.-S. Yang, G. Kim, J. Lee, K.-I. Goh, I.-M. Kim, PLoS ONE 6, e18443 (2011)ADSCrossRefGoogle Scholar
  16. 16.
    W. Chen, R.M. D’Souza, Phys. Rev. Lett. 106, 115701 (2011)ADSCrossRefGoogle Scholar
  17. 17.
    G. D’Agostino, A. Scala, V. Zlatić, G. Caldarelli, http://arxiv.org/abs/1105.3574Google Scholar

Copyright information

© EDP Sciences and Springer 2012

Authors and Affiliations

  • M. Cristelli
    • 1
    • 3
  • A. Tacchella
    • 1
    • 2
  • A. Gabrielli
    • 2
    • 4
  • L. Pietronero
    • 2
  • A. Scala
    • 3
    • 4
  • G. Caldarelli
    • 5
    • 3
    • 4
  1. 1.Dip. Fisica“Sapienza”, Università di RomaRomaItaly
  2. 2.ISC-CNRRomaItaly
  3. 3.ISC-CNR, Dip. Fisica“Sapienza”Università di RomaRomaItaly
  4. 4.London Institute for Mathematical SciencesMayfair LondonUK
  5. 5.Institute for Advanced StudiesIMTLuccaItaly

Personalised recommendations