Advertisement

The European Physical Journal Special Topics

, Volume 210, Issue 1, pp 33–51 | Cite as

Reconfigurable computing for Monte Carlo simulations: Results and prospects of the Janus project

  • M. Baity-Jesi
  • R. A. Baños
  • A. Cruz
  • L. A. Fernandez
  • J. M. Gil-Narvion
  • A. Gordillo-Guerrero
  • M. Guidetti
  • D. Iñiguez
  • A. Maiorano
  • F. Mantovani
  • E. Marinari
  • V. Martin-Mayor
  • J. Monforte-Garcia
  • A. Muñoz Sudupe
  • D. Navarro
  • G. Parisi
  • M. Pivanti
  • S. Perez-Gaviro
  • F. Ricci-Tersenghi
  • J. J. Ruiz-Lorenzo
  • S. F. Schifano
  • B. Seoane
  • A. Tarancon
  • P. Tellez
  • R. Tripiccione
  • D. Yllanes
Review

Abstract

We describe Janus, a massively parallel FPGA-based computer optimized for the simulation of spin glasses, theoretical models for the behavior of glassy materials. FPGAs (as compared to GPUs or many-core processors) provide a complementary approach to massively parallel computing. In particular, our model problem is formulated in terms of binary variables, and floating-point operations can be (almost) completely avoided. The FPGA architecture allows us to run many independent threads with almost no latencies in memory access, thus updating up to 1024 spins per cycle. We describe Janus in detail and we summarize the physics results obtained in four years of operation of this machine; we discuss two types of physics applications: long simulations on very large systems (which try to mimic and provide understanding about the experimental non-equilibrium dynamics), and low-temperature equilibrium simulations using an artificial parallel tempering dynamics. The time scale of our non-equilibrium simulations spans eleven orders of magnitude (from picoseconds to a tenth of a second). On the other hand, our equilibrium simulations are unprecedented both because of the low temperatures reached and for the large systems that we have brought to equilibrium. A finite-time scaling ansatz emerges from the detailed comparison of the two sets of simulations. Janus has made it possible to perform spin-glass simulations that would take several decades on more conventional architectures. The paper ends with an assessment of the potential of possible future versions of the Janus architecture, based on state-of-the-art technology.

Keywords

Graphic Processing Unit European Physical Journal Special Topic Spin Glass Monte Carlo Step Replica Symmetry Break 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    C.A.Angell, Science 267, 1924 (1995)ADSCrossRefGoogle Scholar
  2. 2.
    P.G.Debenedetti, Metastable Liquids (Princeton University Press, Princeton, 1997)Google Scholar
  3. 3.
    P.G.Debenedetti, F.H.Stillinger, Nature 410, 259 (2001)ADSCrossRefGoogle Scholar
  4. 4.
    L.C.E.Struick, Physical Aging in Amorphous Polymers and Other Materials (Elsevier, Houston, 1978)Google Scholar
  5. 5.
    J.A.Mydosh, Spin Glasses: an Experimental Introduction (Taylor and Francis, London, 1993)Google Scholar
  6. 6.
    A.P.Young (ed.), Spin Glasses and Random Fields (World Scientific, Singapore, 1998)Google Scholar
  7. 7.
    A.D.Ogielski, D.A.Huse, Phys. Rev. Lett. 56, 1298 (1986)ADSCrossRefGoogle Scholar
  8. 8.
    P.A. Boyle, et al., IBM J. Res. Develop. 49, 351 (2005)CrossRefGoogle Scholar
  9. 9.
    F. Belletti, et al., Comput. Sci. Eng. 8, 18 (2006)CrossRefGoogle Scholar
  10. 10.
    G. Goldrian, et al., Comput. Sci. Eng. 10, 46 (2008)CrossRefGoogle Scholar
  11. 11.
    H. Baier, et al., Comput. Sci. - Res. Develop. 25, (2010) 149CrossRefGoogle Scholar
  12. 12.
    J. Makino, et al., Proceedings of the 2000 ACM/IEEE conference on Supercomputing (2000)Google Scholar
  13. 13.
    J. Pech, et al., Comp. Phys. Comm. 106, 10 (1997)ADSzbMATHCrossRefGoogle Scholar
  14. 14.
    A. Cruz, et al., Comp. Phys. Comm. 133, 165 (2001)ADSzbMATHCrossRefGoogle Scholar
  15. 15.
    S.F. Edwards, P.W. Anderson, J. Phys. F: Metal Phys. 5, 965 (1975)ADSCrossRefGoogle Scholar
  16. 16.
    S.F. Edwards, P.W. Anderson, J. Phys. F: Metal Phys. 6, 1927 (1976)ADSCrossRefGoogle Scholar
  17. 17.
    J. Barahona, J. Phys. A: Math. Gen. 15, 3241 (1982)MathSciNetADSCrossRefGoogle Scholar
  18. 18.
    M. Mézard, G. Parisi, M. Virasoro, Spin-Glass Theory and Beyond (World Scientific, Singapore, 1987)Google Scholar
  19. 19.
    M. Mézard, G. Parisi, R. Zecchina, Science 297, 812 (2002)ADSCrossRefGoogle Scholar
  20. 20.
    R. Zecchina, in Encyclopedia of Mathematical Physics, edited by J.-P. Françoise, G.L. Naber, T.S. Tsun (Elsevier, Oxford, 2006)Google Scholar
  21. 21.
    K. Gunnarsson, et al., Phys. Rev. B 43, 8199 (1991), see also P. Norblad, P. Svendlidh Experiments on Spin-Glasses in [6]ADSCrossRefGoogle Scholar
  22. 22.
    H.G. Ballesteros, et al., Phys. Rev. B 62, 14237 (2000)ADSCrossRefGoogle Scholar
  23. 23.
    F. Bert, et al., Phys. Rev. Lett. 92, 167203 (2004)ADSCrossRefGoogle Scholar
  24. 24.
    D.J. Amit, V.Martin-Mayor, Field Theory, the Renormalization Group and Critical Phenomena, 3rd edn. (World Scientific, Singapore, 2005)Google Scholar
  25. 25.
    M.E.J. Newman, G. Barkema, Monte Carlo Methods in Statistical Physics (Oxford University Press, 1999)Google Scholar
  26. 26.
    H. Hukushima, K. Nemoto, J. Phys. Soc. Japan 65, 1604 (1996)ADSCrossRefGoogle Scholar
  27. 27.
    E. Marinari in Advances in Computer Simulation, edited by J. Kerstéz, I. Kondor (Springer-Verlag, 1998)Google Scholar
  28. 28.
    H.G. Katzgraber, Introduction to Monte Carlo methods, lecture at Modern Computation Science (Oldenburg, 2009)Google Scholar
  29. 29.
    F. Belletti, et al., Comp. Phys. Comm. 178, 208 (2008)ADSCrossRefGoogle Scholar
  30. 30.
    F.Belletti, et al., Proceedings of ParCo2007, Parallel Computing: Architectures, Algorithms and Applications, NIC Series, vol. 38 (2007), p. 553Google Scholar
  31. 31.
    F. Belletti, et al., Comput. Sci. Eng. 8, 41 (2006)CrossRefGoogle Scholar
  32. 32.
    F. Belletti, et al., Comput. Sci. Eng. 11, 48 (2009)CrossRefGoogle Scholar
  33. 33.
    V.Parisi, G.Parisi, F.Rapuano, Phys. Lett. B 157, 301 (1985)MathSciNetADSCrossRefGoogle Scholar
  34. 34.
    H.G. Ballesteros, V. Martin-Mayor, Phys. Rev. E 58, 6787 (1998)ADSCrossRefGoogle Scholar
  35. 35.
    P. Contucci, C.Giardinà, C.Giberti, G.Parisi, C.Vernia, Phys. Rev. Lett. 99, 057206 (2007)ADSCrossRefGoogle Scholar
  36. 36.
    S. Jimenez, V. Martin-Mayor, G. Parisi, A. Tarancon, J. Phys. A: Math. Gen. 36, 10755 (2003)MathSciNetADSzbMATHCrossRefGoogle Scholar
  37. 37.
    F. Belletti, et al., Phys. Rev. Lett. 101, 157201 (2008)ADSCrossRefGoogle Scholar
  38. 38.
    F. Belletti, et al., J. Stat. Phys. 135, 1121 (2009)MathSciNetADSzbMATHCrossRefGoogle Scholar
  39. 39.
    L.A. Fernandez, et al., Phys. Rev. B 80, 024422 (2009)ADSCrossRefGoogle Scholar
  40. 40.
    R.A. Baños, et al., J. Stat. Mech. P06026 (2010)Google Scholar
  41. 41.
    R.A. Baños, et al., Phys. Rev. B 84, 174209 (2011)ADSCrossRefGoogle Scholar
  42. 42.
    A. Billoire, et al., J. Stat. Mech. P10019 (2011)Google Scholar
  43. 43.
    R.A. Baños, et al., Phys. Rev. Lett. 105, 177202 (2010)CrossRefGoogle Scholar
  44. 44.
    M. Mézard, G. Parisi, M.A. Virasoro, Spin Glass Theory and Beyond (World Scientific, Singapore, 1987)Google Scholar
  45. 45.
    D.S. Fisher, D.A. Huse, Phys. Rev. Lett. 56, 1601 (1986)ADSCrossRefGoogle Scholar
  46. 46.
    D.S. Fisher, D.A. Huse, Phys. Rev. B 38, 373 (1988)ADSCrossRefGoogle Scholar
  47. 47.
    D.S. Fisher, D.A. Huse, Phys. Rev. B 38, 386 (1988)ADSCrossRefGoogle Scholar
  48. 48.
    F. Krzakala, O.C. Martin, Phys. Rev. Lett. 85, 3013 (2000)ADSCrossRefGoogle Scholar
  49. 49.
    M. Palassini, A.P. Young, Phys. Rev. Lett. 85, 3017 (2000)ADSCrossRefGoogle Scholar
  50. 50.
    J.R.L. de Almeida, D.J. Thouless, J. Phys. A 11, 983 (1978)ADSCrossRefGoogle Scholar
  51. 51.
    R.A. Baños, et al., Proc. Natl. Acad. Sci. USA 109, 6452 (2012)ADSCrossRefGoogle Scholar
  52. 52.
    D.J. Gross, I. Kanter, H. Sompolinsky, Phys. Rev. Lett. 55, 304 (1985)ADSCrossRefGoogle Scholar
  53. 53.
    A. Cruz, et al., Phys. Rev. B 79, 184408 (2009)MathSciNetADSCrossRefGoogle Scholar
  54. 54.
    R.A. Baños, et al., J. Stat. Mech. P05002 (2010)Google Scholar
  55. 55.
    J.T. Chayes, L. Chayes, D.S. Fischer, T. Spencer, Phys. Rev. Lett. 57, 2999 (1986)MathSciNetADSCrossRefGoogle Scholar
  56. 56.
    A. Maiorano, V. Martin-Mayor, J.J. Ruiz-Lorenzo, A. Tarancon, Phys. Rev. B 76, 064435 (2007)ADSCrossRefGoogle Scholar
  57. 57.
    M. Guidetti, et al., Proceedings of PPAM09, Lecture Notes on Computer Science (LNCS) 6067 (Springer, 2010), p. 467Google Scholar
  58. 58.
    M. Guidetti, et al., Monte Carlo Simulations of Spin Systems on Multi-core Processors, Lecture Notes on Computer Science (LNCS) 7133, edited by K. Jonasson (Springer, Heidelberg, 2010), p. 220Google Scholar

Copyright information

© EDP Sciences and Springer 2012

Authors and Affiliations

  • M. Baity-Jesi
    • 1
    • 2
  • R. A. Baños
    • 3
    • 2
  • A. Cruz
    • 3
    • 2
  • L. A. Fernandez
    • 1
    • 2
  • J. M. Gil-Narvion
    • 2
  • A. Gordillo-Guerrero
    • 4
    • 2
  • M. Guidetti
    • 2
  • D. Iñiguez
    • 5
    • 2
  • A. Maiorano
    • 6
    • 2
  • F. Mantovani
    • 7
  • E. Marinari
    • 8
  • V. Martin-Mayor
    • 1
    • 2
  • J. Monforte-Garcia
    • 3
    • 2
  • A. Muñoz Sudupe
    • 1
  • D. Navarro
    • 9
  • G. Parisi
    • 8
  • M. Pivanti
    • 6
  • S. Perez-Gaviro
    • 2
  • F. Ricci-Tersenghi
    • 8
  • J. J. Ruiz-Lorenzo
    • 10
    • 2
  • S. F. Schifano
    • 11
  • B. Seoane
    • 1
    • 2
  • A. Tarancon
    • 3
    • 2
  • P. Tellez
    • 3
  • R. Tripiccione
    • 7
  • D. Yllanes
    • 6
    • 2
  1. 1.Departamento de Física Teórica IUniversidad ComplutenseMadridSpain
  2. 2.Instituto de Biocomputación y Física de Sistemas Complejos (BIFI)ZaragozaSpain
  3. 3.Departamento de Física TeóricaUniversidad de ZaragozaZaragozaSpain
  4. 4.Departamento de Ingeniería Eléctrica, Electrónica y AutomáticaUniversidad de ExtremaduraCáceresSpain
  5. 5.Diputación General de AragónFundación ARAIDZaragozaSpain
  6. 6.Dipartimento di FisicaLa Sapienza Università di RomaRomeItaly
  7. 7.Dipartimento di Fisica Università di Ferrara and INFN — Sezione di FerraraFerraraItaly
  8. 8.Dipartimento di Fisica, IPCF-CNR, UOS Roma Kerberos and INFNLa Sapienza Università di RomaRomeItaly
  9. 9.Departamento de Ingeniería, Electrónica y Comunicaciones and Instituto de Investigación en Ingeniería de Aragón (I3A)Universidad de ZaragozaZaragozaSpain
  10. 10.Departamento de FísicaUniversidad de ExtremaduraBadajozSpain
  11. 11.Dipartimento di Matematica e Informatica Università di Ferrara and INFN — Sezione di FerraraFerraraItaly

Personalised recommendations