Shockless spalling damage of alumina ceramic

  • B. ErzarEmail author
  • E. Buzaud
Regular Article


Ceramic materials are commonly used to build multi-layer armour. However reliable test data is needed to identify correctly models and to be able to perform accurate numerical simulation of the dynamic response of armour systems. In this work, isentropic loading waves have been applied to alumina samples to induce spalling damage. The technique employed allows assessing carefully the strain-rate at failure and the dynamic strength. Moreover, specimens have been recovered and analysed using SEM. In a damaged but unbroken specimen, interactions between cracks has been highlighted illustrating the fragmentation process.


European Physical Journal Special Topic Spalling Strength Plate Impact Hugoniot Elastic Limit Armour System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    M.L. Wilkins, Int. J. Engng. Sci. 16, 793 (1978)CrossRefGoogle Scholar
  2. 2.
    P.C. Den Reijer, Ph.D. thesis, Delft University (1991)Google Scholar
  3. 3.
    Z. Rosenberg, et al., J. Phys. (France) 46, 8 (1985)Google Scholar
  4. 4.
    C.S. Yust, L.A. Harris, in Shock Waves and High-Strain-Rate Phenomena in Metals edited by M.A. Meyers, L.E. Murr (Plenum, New York, 1981)Google Scholar
  5. 5.
    F. Longy, Ph.D. thesis, CEA Gramat (1988)Google Scholar
  6. 6.
    L.H.L. Louro, et al., J. Phys. (France) 49 (1988)Google Scholar
  7. 7.
    M.A. Meyers, Dynamic behavior of materials (John Wiley and Sons, New York, 1994)Google Scholar
  8. 8.
    J.E. Field, et al., in Proceedings of the conference of the American Physical Society topical group on shock compression of condensed matter, edited by M.D. Furnish, Y.M. Gupta, J.W. Forbes (Portland, USA, 2003), p. 1151Google Scholar
  9. 9.
    H. Marom, et al., J. Appl. Phys. 92, 10 (2002)CrossRefGoogle Scholar
  10. 10.
    A.K. Mukhopadhyay, et al., Ceramics International 37 (2011)Google Scholar
  11. 11.
    A. Cosculluela, Ph.D. thesis, CEA Gramat (1992)Google Scholar
  12. 12.
    N.H. Murray, et al., J. Appl. Phys. 84 (1998)Google Scholar
  13. 13.
    J.W. Swegle, D.E. Grady, J. Appl. Phys. 58, 692 (1985)ADSCrossRefGoogle Scholar
  14. 14.
    J. Cagnoux, P. Chartagnac, P. Hereil, M. Perez, Ann. Phys. 12 (1987)Google Scholar
  15. 15.
    S.D. Rothman, J.-P. Davis, J. Maw, C.M. Robinson, K. Parker, J. Palmer, J. Phys. D: Appl. Phys. 38 (2005)Google Scholar
  16. 16.
    J.R. Asay, M.D. Knudson, in High Pressure Shock Compression of Solids VIII, edited by L.C. Chhabildas, L. Davidson, Y. Horie (Springer, 2005)Google Scholar
  17. 17.
    M.D. Knudson, in Shock Wave Science and Technology Reference Library, vol. 2, Solids I, edited by Y. Horie (Springer, 2007)Google Scholar
  18. 18.
    F. Malaise, Ph.D. thesis, CEA Gramat (1999)Google Scholar
  19. 19.
    G. Avrillaud, et al., in Proceedings of the 14th IEEE International Pulsed Power Conference (2003), p. 913Google Scholar
  20. 20.
    J. Petit, et al., J. Phys. IV (France) 7 (1997)Google Scholar
  21. 21.
    P.Y. Chanal, J. Luc, 14th International Congress of Metrology (Paris, 2009)Google Scholar
  22. 22.
    S.A. Novikov, et al., Fiz. Metall. Metallovedeniye 4 (1966)Google Scholar
  23. 23.
    T. Antoun, et al, Spall fracture (Springer-Verlag, New York, 2003)Google Scholar
  24. 24.
    G.I. Kanel, Int. J. Fract. 163 (2010)Google Scholar
  25. 25.
    C. Denoual, F. Hild, Comp. Meth. Appl. Mech. Engng. 183 (2000)Google Scholar
  26. 26.
    P. Forquin, F. Hild, in Adv. Appl. Mech. 44, edited by Giessen, Aref (Academic Press, San Diego, 2010)Google Scholar

Copyright information

© EDP Sciences and Springer 2012

Authors and Affiliations

  1. 1.CEA, DAM, GRAMATGramatFrance

Personalised recommendations