Stick balancing, falls and Dragon-Kings

  • J. L. Cabrera
  • J. G. Milton
Regular Article

Abstract

The extent to which the occurrence of falls, the dominant feature of human attempts to balance a stick at their fingertip, can be predicted is examined in the context of the “Dragon-King” hypothesis. For skilled stick balancers, fluctuations in the controlled variable, namely the vertical displacement angle θ, exhibit power law behaviors. When stick balancing is made less stable by either decreasing the length of the stick or by requiring the subject to balance the stick on the surface of a table tennis racket, systematic departures from the power law behaviors are observed in the range of large θ. This observation raises the possibility that the presence of departures from the power law in the large length scale region, possibly Dragon-Kings, may identify situations in which the occurrence of a fall is more imminent. However, whether or not Dragon-Kings are observed, there is a Weibull-type survival function for stick falling. The possibility that increased risk of falling can, at least to some extent, be predicted from fluctuations in the controlled variable before the event occurs has important implications for the development of preventative strategies for the management of phenomena ranging from earthquakes to epileptic seizures to falls in the elderly.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    L. Glass, M.C. Mackey, From Clocks to Chaos: The Rhythms of Life (Princeton University Press, Princeton, N.J., 1988)Google Scholar
  2. 2.
    C.K. Peng, J. Mietus, J.M. Hausdorff, S. Havlin, et al., Phys. Rev. Lett. 70, 1343 (1993)ADSCrossRefGoogle Scholar
  3. 3.
    J.J. Collins, C.J. De Luca, Phys. Rev. Lett. 73, 764 (1994)MathSciNetADSCrossRefGoogle Scholar
  4. 4.
    J.M. Hausdroff, C.-K. Peng, Z. Ladin, J.Y. Wei, et al., J. Appl. Physiol. 78, 349 (1995)Google Scholar
  5. 5.
    B. Saki, Amer. J. Resp. Crit. Care Med. 166, 133 (2002)CrossRefGoogle Scholar
  6. 6.
    J.L. Cabrera, J.G. Milton, Phys. Rev. Lett. 89, 158702 (2002)ADSCrossRefGoogle Scholar
  7. 7.
    I. Osorio, M.G. Frei, D. Sornette, J. Milton, et al., Phys. Rev. E 82, 021919 (2010)MathSciNetADSCrossRefGoogle Scholar
  8. 8.
    N.N. Taleb, The Black Swan: The Impact of the Highly Improbable (Random House, New York, 2007)Google Scholar
  9. 9.
    D. Sornette, Int. J. Terraspace Sci. Eng. 2, 1 (2009)Google Scholar
  10. 10.
    L. Glass, C.P. Malta, J. Theoret. Biol. 145, 35 (1990)MathSciNetCrossRefGoogle Scholar
  11. 11.
    J.C. Bastos de Figueiredo, L. Diambra, L. Glass, C.P. Malta, Phys. Rev. E 65, 051905 (2002)MathSciNetADSCrossRefGoogle Scholar
  12. 12.
    J. Guckenheimer, IEEE Trans. Automatic Control 40, 321 (1995)MathSciNetMATHCrossRefGoogle Scholar
  13. 13.
    J.G. Milton, J.L. Cabrera, T. Ohira, EPL 83, 48001 (2008)MathSciNetADSCrossRefGoogle Scholar
  14. 14.
    J.G. Milton, T. Ohira, J.L. Cabrera, R.M. Fraiser, et al., PLoS ONE 4, e7427 (2009)ADSCrossRefGoogle Scholar
  15. 15.
    Y. Asai, Y. Tasaka, K. Nomura, M. Casidio, et al., PLoS ONE 4, e6169 (2009)ADSCrossRefGoogle Scholar
  16. 16.
    A. Shumway-Cook, M.H. Woollacott, Motor Control: Theory and Practical Applications, Second Edition (Lippincott, Williams & Wilkins, New York, 2001)Google Scholar
  17. 17.
    J.L. Cabrera, Physica A 356, 25 (2005)ADSCrossRefGoogle Scholar
  18. 18.
    J.-P. Bouchard, Y. Gefen, M. Potters, M. Wyart, Quant. Finance 4, 176 (2004)ADSGoogle Scholar
  19. 19.
    G. Stepan, Phil. Trans. Roy. Soc. A 367, 1195 (2009)MathSciNetADSMATHCrossRefGoogle Scholar
  20. 20.
    J. Milton, J.L. Townsend, M.A. King, T. Ohira, Phil. Trans. R. Soc. A 367, 1181 (2009)MathSciNetADSMATHCrossRefGoogle Scholar
  21. 21.
    J. Milton, J.L. Cabrera, T. Ohira, S. Tajima, et al., Chaos 19, 026110 (2009)MathSciNetADSCrossRefGoogle Scholar
  22. 22.
    V.K. Jirsa, P. Fink, P. Foo, J.A.S. Kelso, J. Biol. Phys. 26, 85 (2000)CrossRefGoogle Scholar
  23. 23.
    J.L. Cabrera, J.G. Milton, Nonlinear Studies 11, 305 (2004)MathSciNetMATHGoogle Scholar
  24. 24.
    J.L. Cabrera, J.G. Milton, Chaos 14, 691 (2004)MathSciNetADSMATHCrossRefGoogle Scholar
  25. 25.
    J.L. Cabrera, C. Luciani, J. Milton, Cond. Matter Phys. 9, 373 (2006)Google Scholar
  26. 26.
    T. Cluff, R. Balasubramaniam, PLoS ONE 4, e5998 (2009)ADSCrossRefGoogle Scholar
  27. 27.
    T. Cluff, T. Gharib, R. Balasubramaniam, Exp. Brain Res. 203, 647 (2010)CrossRefGoogle Scholar
  28. 28.
    B. Mehta, S. Schaal, J. Neurophysiol. 88, 942 (2002)Google Scholar
  29. 29.
    R. Bormann, J.L. Cabrera, J.G. Milton, C.W. Eurich, Neurocomputing 58-60, 517 (2004)CrossRefGoogle Scholar
  30. 30.
    J. L. Cabrera, R. Bormann, C. Eurich, T. Ohira, et al., Fluct. Noise Lett. 4, L107 (2004)CrossRefGoogle Scholar
  31. 31.
    F. Patzelt, M. Riegel, U. Ernst, K. Pawelzik, Front. Comp. Neurosci. 1, No. 4 (2007)Google Scholar
  32. 32.
    J. Milton, S.L. Small, A. Solodkin, Methods 45, 336 (2008)CrossRefGoogle Scholar
  33. 33.
    S. Suzuki, F. Harashima, K. Furuta, Adv. Human-Computer Interactions 2010, 215825 (2010)Google Scholar
  34. 34.
    T. Insperger, Commun. Nonlinear Sci. Numer. Simulat. 16, 2160 (2011)MathSciNetADSMATHCrossRefGoogle Scholar
  35. 35.
    D.B. Lockhart, L.H. Ting, Nat. Neurosci. 10, 1329 (2007)CrossRefGoogle Scholar
  36. 36.
    J. Boulet, R. Balasubramiam, A. Daffertshofer, A. Longtin, Phil. Trans. Roy. Soc. A 368, 423 (2010)ADSMATHCrossRefGoogle Scholar
  37. 37.
    C.W. Eurich, J.G. Milton, Phys. Rev. E 54, 6681 (1996)ADSCrossRefGoogle Scholar
  38. 38.
    C.W. Eurich, K. Pawelzik, Springer Lecture Notes in Computer Science, edited by W. Duch, J. Kacprzyk, E. Oja, S. Zadronzny, vol. 3697 (Springer-Verlag, 2005), p. 365Google Scholar
  39. 39.
    I.D. Loram, H. Gollee, M. Lakie, P. Gawthrop, J. Physiol. 589, 307 (2011)CrossRefGoogle Scholar
  40. 40.
    M.J. Dodson, A.W. Goodwin, A.S. Browning, H.M. Gehring, J. Neuroscience 18, 521 (1999)Google Scholar
  41. 41.
    G. Orban, E. Vandenbussche, R. Vogels, Vision Res. 24, 121 (1984)CrossRefGoogle Scholar
  42. 42.
    P.M. Fitts, M.I. Posner, Human performance (Brooks/Cole, Belmont, CA, 1967)Google Scholar
  43. 43.
    V. Puttermans, N. Wenderoth, S.V. Swinnen, J. Neurosci. 25, 4270 (2005)CrossRefGoogle Scholar
  44. 44.
    J. Milton, A. Solodkin, P. Hlustik, S.L. Small, NeuroImage 35, 804 (2007)CrossRefGoogle Scholar
  45. 45.
    D.A. Winter, A.E. Patla, F. Prince, M. Ishac, et al., J. Neurophysiol. 80, 1211 (1998)Google Scholar
  46. 46.
    I.D. Loram, M. Lakie, J. Physiol. 540, 1111 (2002)CrossRefGoogle Scholar
  47. 47.
    I.D. Loram, C.N. Maganaris, M. Lakie, J. Physiol. 564, 295 (2005)CrossRefGoogle Scholar
  48. 48.
    A.D. Kuo, Human Movement Science 26, 617 (2007)CrossRefGoogle Scholar
  49. 49.
    F. Moss, J.G. Milton, Nature 425, 911 (2003)ADSCrossRefGoogle Scholar
  50. 50.
    S.R. Lord, C. Sherrington, H.B. Menz, Falls in older people: Risk factors and strategies for prevention (Cambridge University Press, New York, 2001)Google Scholar
  51. 51.
    H.G. Kang, L.A. Lipsitz, J. Neurophysiol. 104, 3510 (2010)CrossRefGoogle Scholar

Copyright information

© EDP Sciences and Springer 2012

Authors and Affiliations

  • J. L. Cabrera
    • 1
  • J. G. Milton
    • 2
  1. 1.Centro de FísicaI. V. I. C.CaracasVenezuela
  2. 2.W. M. Keck Science CenterThe Claremont CollegesClaremontUSA

Personalised recommendations