Black swans, power laws, and dragon-kings: Earthquakes, volcanic eruptions, landslides, wildfires, floods, and SOC models

  • M. K. Sachs
  • M. R. Yoder
  • D. L. Turcotte
  • J. B. Rundle
  • B. D. Malamud


Extreme events that change global society have been characterized as black swans. The frequency-size distributions of many natural phenomena are often well approximated by power-law (fractal) distributions. An important question is whether the probability of extreme events can be estimated by extrapolating the power-law distributions. Events that exceed these extrapolations have been characterized as dragon-kings. In this paper we consider extreme events for earthquakes, volcanic eruptions, wildfires, landslides and floods. We also consider the extreme event behavior of three models that exhibit self-organized criticality (SOC): the slider-block, forest-fire, and sand-pile models. Since extrapolations using power-laws are widely used in probabilistic hazard assessment, the occurrence of dragon-king events have important practical implications.


European Physical Journal Special Topic Loader Plate Sumatra Earthquake Characteristic Earthquake Sandpile Model 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    R.R. Kinnison, Applied Extreme Value Statistics (Battelle Press, Columbus, Ohio, 1985), ISBN: 0029476305Google Scholar
  2. 2.
    N. Taleb, The Black Swan: The Impact of the Highly Improbable, 1st edn. (Random House, New York, 2007), ISBN: 9781400063512Google Scholar
  3. 3.
    D.L. Turcotte, Fractals and Chaos in Geology and Geophysics, 2nd edn. (Cambridge University Press, Cambridge, UK, 1997), ISBN: 0521561647 (hardback)Google Scholar
  4. 4.
    D. Sornette, Int. Terraspace Sci. Eng. 2, 1 (2009)Google Scholar
  5. 5.
    A. Guarino, A. Garcimartín, S. Ciliberto, Eur. Phys. J. B - Cond. Matter Complex Syst. 6, 13 (1998)Google Scholar
  6. 6.
    M. Alava, P. Nukala, S. Zapperi, Adv. Phys. 55, 349 (2006)ADSCrossRefGoogle Scholar
  7. 7.
    B. Gutenberg, C.F. Richter, Seismicity of the Earth and Associated Phenomena (Princeton University Press, Princeton, N.J., 1954)Google Scholar
  8. 8.
    A.M. Dziewoński, T.A. Chou, J.W. Woodhouse, J. Geophys. Res. 86, 2825 (1981)ADSCrossRefGoogle Scholar
  9. 9.
    G. Ekström, A.M. Dziewoński, N.N. Maternovskaya, M. Nettles, Phys. Earth Planet. Inter. 148, 327 (2005)ADSCrossRefGoogle Scholar
  10. 10.
    E.R. Engdahl, R. van der Hilst, R. Buland, Bull. Seis. Soc. Am. 88, 722 (1998)Google Scholar
  11. 11.
    J.B. Rundle, J. Geophys. Res. 94, 12337 (1989)ADSCrossRefGoogle Scholar
  12. 12.
    D. Sornette, L. Knopoff, Y. Kagen, C. Vanneste, J. Geophys. Res. 101, 13883 (1996)ADSCrossRefGoogle Scholar
  13. 13.
    S.G. Wesnousky, Bull. Seismol. Soc. Amer. 84, 1940 (1994)Google Scholar
  14. 14.
    G.P. Biasi, R.J. Weldon, T.E. Fumal, G.G. Seitz, Bull. Seis. Soc. Am. 92, 2761 (2002)CrossRefGoogle Scholar
  15. 15.
    M. Ando, Tectonophys. 27, 119 (1975)MathSciNetCrossRefGoogle Scholar
  16. 16.
    W.H. Bakun, B. Aagaard, B. Dost, W.L. Ellsworth, J.L. Hardebeck, R.A. Harris, C. Ji, M.J.S. Johnston, J. Langbein, J.J. Lienkaemper, et al., Nature 437, 969 (2005)ADSCrossRefGoogle Scholar
  17. 17.
    R. Shcherbakov, D.L. Turcotte, J.B. Rundle, Bull. Seismol. Soc. Amer. 96, S376 (2006)CrossRefGoogle Scholar
  18. 18.
    R.B. Hofmann, Eng. Geol. 43, 5 (1996)CrossRefGoogle Scholar
  19. 19.
    T. Ishibe, K. Shimazaki, Earth Planets Space 61, 1041 (2009)ADSGoogle Scholar
  20. 20.
    J.M. Carlson, J.S. Langer, Phys. Rev. A 40, 6470 (1989)MathSciNetADSCrossRefGoogle Scholar
  21. 21.
    R. Burridge, L. Knopoff, Bull. Seismol. Soc. Amer. 57, 341 (1967)Google Scholar
  22. 22.
    S. Abaimov, D. Turcotte, R. Shcherbakov, J. Rundle, G. Yakovlev, C. Goltz, W. Newman, Pure Appl. Geophys. 165, 777 (2008)ADSCrossRefGoogle Scholar
  23. 23.
    D. Sornette, Images de la Physique 1993 édition du CNRS, 9 (CNRS, Paris, 1994)Google Scholar
  24. 24.
    D. Sornette, P. Miltenberger, C. Vanneste, Statistical physics of fault patterns self-organized by repeated earthquakes: synchronization versus self-organized criticality, in Recent progress in statistical mechanics and quantum field theory. Proceedings, Conference, Los Angeles, USA, May 16–21, 1994, edited by P. Bouwknegt, P. Fendley, J.A. Minahan, D. Nemeschansky, K. Pilch, H. Saleur, N.P. Warner (World Scientific, Singapore, 1995), p. 313Google Scholar
  25. 25.
    I. Osorio, M.G. Frei, D. Sornette, J. Milton, Y.C. Lai, Phys. Rev. E 82, 021919 (2010)MathSciNetADSCrossRefGoogle Scholar
  26. 26.
    R.B. Stothers, Science 224, 1191 (1984)ADSCrossRefGoogle Scholar
  27. 27.
    N.I. Deligne, S.G. Coles, R.S.J. Sparks, J. Geophys. Res. 115, B06203 (2010)ADSCrossRefGoogle Scholar
  28. 28.
    C.A. Chesner, W.I. Rose, A. Deino, R. Drake, J.A. Westgate, Geology 19, 200 (1991)ADSCrossRefGoogle Scholar
  29. 29.
    M. Rampino, S. Self, Science 262, 1955 (1993)ADSCrossRefGoogle Scholar
  30. 30.
    B.D. Malamud, G. Morein, D.L. Turcotte, Science 281, 1840 (1998)ADSCrossRefGoogle Scholar
  31. 31.
    B.D. Malamud, J.D.A. Millington, G.L.W. Perry, Proc. Nation. Acad. Sci. USA 102, 4694 (2005)ADSCrossRefGoogle Scholar
  32. 32.
    J.D.A. Millington, G.L.W. Perry, B.D. Malamud, Geol. Soc. London, Spec. Publ. 261, 155 (2006)CrossRefGoogle Scholar
  33. 33.
    T.J. Brown, B.L. Hall, C.R. Mohrle, H.J. Reinbold, CEFA Report 02-04 (2002)Google Scholar
  34. 34.
    R.A. Minnich, Science 219, 1287 (1983)ADSCrossRefGoogle Scholar
  35. 35.
    R.A. Minnich, Conservation Biology 15, 1549 (2001)CrossRefGoogle Scholar
  36. 36.
    C.P. Weatherspoon, C.N. Skinner, Tech. rep., UC Davis, Centers for Water and Wildland Resources (1996), sierra Nevada Ecosystem Project: Final report to Congress, vol. II, Assessments and scientific basis for management optionsGoogle Scholar
  37. 37.
    A.H. Taylor, C.N. Skinner, Forest Ecol. Manag. 111, 285 (1998)CrossRefGoogle Scholar
  38. 38.
    J.K. Agee, C.N. Skinner, Forest Ecol. Manag. 211, 83 (2005)CrossRefGoogle Scholar
  39. 39.
    M.R. Yoder, D.L. Turcotte, J.B. Rundle, Phys. Rev. E 83 (2011)Google Scholar
  40. 40.
    B. Drossel, F. Schwabl, Phys. Rev. Lett. 69, 1629 (1992)ADSCrossRefGoogle Scholar
  41. 41.
    S.F. Tebbens, S.M. Burroughs, Physica D 211, 221 (2005)ADSzbMATHCrossRefGoogle Scholar
  42. 42.
    B.D. Malamud, D.L. Turcotte, F. Guzzetti, P. Reichenbach, Earth Surf. Proc. Landforms 29, 687 (2004)ADSCrossRefGoogle Scholar
  43. 43.
    P. Bak, C. Tang, K. Wiesenfeld, Phys. Rev. A 38, 364 (1988)MathSciNetADSzbMATHCrossRefGoogle Scholar
  44. 44.
    D.R. Maidment, Handbook of Hydrology (McGraw-Hill, New York, 1993), ISBN: 0070397325Google Scholar
  45. 45.
    B.D. Malamud, D.L. Turcotte, C.C. Barton, Env. Eng. Geosc. 2, 479 (1996)Google Scholar
  46. 46.
    B.D. Malamud, D.L. Turcotte, J. Hydrol. 322, 168 (2006), hydrofractals ’03ADSCrossRefGoogle Scholar
  47. 47.
    J.E. O’Connor, L.L. Ely, W.E. Wohl, L.E. Stevens, T.S. Melis, V.S. Kale, V.R. Baker, J. Geol. 102, 1 (1994)ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences and Springer 2012

Authors and Affiliations

  • M. K. Sachs
    • 1
  • M. R. Yoder
    • 1
  • D. L. Turcotte
    • 2
  • J. B. Rundle
    • 1
    • 2
    • 3
  • B. D. Malamud
    • 4
  1. 1.Department of PhysicsUniversity of CaliforniaDavisUSA
  2. 2.Department of GeologyUniversity of CaliforniaDavisUSA
  3. 3.Santa Fe InstituteSanta FeUSA
  4. 4.Department of GeographyKings College LondonLondonUK

Personalised recommendations