Are there “dragon-kings” events (i.e. genuine outliers) among extreme avalanches?

  • C. AnceyEmail author


Predicting the occurrence and spatial extent of extreme avalanches is a longstanding issue. Using field data pooled from various sites within the same mountain range, authors showed that the avalanche size distribution can be described using either an extreme value distribution or a thick-tailed distribution, which implies that although they are much larger than common avalanches, extreme avalanches belong to the same population of events as “small” avalanches. Yet, when looking at historical records of catastrophic avalanches, archives reveal that a few avalanches had features that made them “extra-ordinary.” Applying avalanche-dynamics or statistical models to simulate these past events runs into considerable difficulty since the model parameters or the statical properties are very different from the values usually set to model extreme avalanches. Were these events genuine outliers (also called “dragon-kings”)? What were their distinctive features? This paper reviews some of the concepts in use to model extreme events, gives examples of processes that were at play in extreme avalanches, and shows that the concept of dragon-king avalanches is of particular relevance to describing some extreme avalanches.


European Physical Journal Special Topic Snow Avalanche Heavy Snowfall Runout Distance Black Swan 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    B. Salm, Cold Reg. Sci. Technol. 39, 83 (2004)CrossRefGoogle Scholar
  2. 2.
    W.J. Ammann (ed.), Der Lawinenwinter 1999 (Eidgenössisches Institut für Schnee- und Lawinenforschung, Davos, 2000)Google Scholar
  3. 3.
    Bundesamt für Umwelt, Leben mit dem Lawinenrisiko. Die Lehren aus dem Lawinenwinter 1999, Tech. Rep. DIV-7503-D (1999)Google Scholar
  4. 4.
    D. Sornette, Int. J. Terraspace Sci. Eng. 2, 1 (2009)Google Scholar
  5. 5.
    K.W. Birkeland, C.J. Mock, Nat. Hazard 24, 75 (2001)CrossRefGoogle Scholar
  6. 6.
    V. Jomelli, C. Delval, D. Grancher, S. Escande, D. Brunstein, B. Hetu, L. Filion, P. Pech, Cold Reg. Sci. Technol. 47, 180 (2007)CrossRefGoogle Scholar
  7. 7.
    P. Höller, Nat. Hazard 48, 399 (2009)CrossRefGoogle Scholar
  8. 8.
    P. Föhn, R. Meister, in IUFRO/FAO Colloquium on Research on Small Torrential Watersheds (incl. avalanches), vol. 144 (Mitteilung der Forstlichen Bundesversuchsanstalt, Wien, Grenoble, 1982)Google Scholar
  9. 9.
    K. Lied, S. Bakkehøi, J. Glaciol. 26, 165 (1980)ADSGoogle Scholar
  10. 10.
    D.M. McClung, Can. Geotech. J. 37, 161 (2000)CrossRefGoogle Scholar
  11. 11.
    D.M. McClung, Can. Geotech. J. 38, 1254 (2001)CrossRefGoogle Scholar
  12. 12.
    C.J. Keylock, Cold Reg. Sci. Technol. 42, 185 (2005)CrossRefGoogle Scholar
  13. 13.
    K.W. Birkeland, C.C. Landry, Geophys. Res. Lett. 29, 1 (2002)CrossRefGoogle Scholar
  14. 14.
    J. Faillettaz, F. Louchet, J.R. Grasso, Phys. Rev. Lett. 93, 208001 (2004)ADSCrossRefGoogle Scholar
  15. 15.
    D.M. McClung, J. Geophys. Res. 114, F01006 (2009)ADSCrossRefGoogle Scholar
  16. 16.
    E.H. Bair, J. Dozier, K.W. Birkeland, Geophys. Res. Lett. 35, L23502 (2008)ADSCrossRefGoogle Scholar
  17. 17.
    S.P. Pudasaini, K. Hutter, Avalanche Dynamics (Springer, Berlin, 2006)Google Scholar
  18. 18.
    O. Buser, H. Frutiger, J. Glaciol. 26, 121 (1980)ADSGoogle Scholar
  19. 19.
    C. Ancey, C. Gervasoni, M. Meunier, Cold Reg. Sci. Technol. 39, 161 (2004)CrossRefGoogle Scholar
  20. 20.
    C. Ancey, Phil. Trans. Roy. Soc. London A 363, 1529 (2005)MathSciNetADSzbMATHCrossRefGoogle Scholar
  21. 21.
    B. Salm, A. Burkard, H. Gubler, Berechnung von Fliesslawinen, eine Anleitung für Praktiker mit Beispielen, Tech. Rep. No. 47, institution Eidgenössisches Institut für Schnee- und Lawinenforschung (Davos) (1990)Google Scholar
  22. 22.
    M. Meunier, C. Ancey, J. Glaciol. 50, 268 (2004)ADSCrossRefGoogle Scholar
  23. 23.
    C.J. Keylock, D.M. McClung, M.M. Magnússon, J. Glaciol. 45, 303 (1999)ADSCrossRefGoogle Scholar
  24. 24.
    M. Barbolini, C.J. Keylock, Nat. Hazard Earth. Sys. Sci. 2, 239 (2002)ADSCrossRefGoogle Scholar
  25. 25.
    A.N. Bozhinskiy, Ann. Glaciol. 38, 351 (2004)ADSCrossRefGoogle Scholar
  26. 26.
    C. Ancey, M. Meunier, D. Richard, Water Resour. Res. 39, WR01099 (2003)ADSCrossRefGoogle Scholar
  27. 27.
    J. Schweizer, C. Mitterer, L. Stoffel, Cold Reg. Sci. Technol. 59, 234 (2009)CrossRefGoogle Scholar
  28. 28.
    P. Gauer, K. Kronholm, K. Lied, K. Kristensen, S. Bakkehøi, Cold Reg. Sci. Technol. 62, 42 (2010)CrossRefGoogle Scholar
  29. 29.
    D. Straub, A. Grêt-Regamey, Cold Reg. Sci. Technol. 46, 192 (2006)CrossRefGoogle Scholar
  30. 30.
    N. Eckert, E. Parent, D. Richard, Cold Reg. Sci. Technol. 49, 88 (2007)CrossRefGoogle Scholar
  31. 31.
    N. Eckert, E. Parent, M. Naaim, D. Richard, Stoch. Env. Res. Risk Ass. 22, 185 (2008)MathSciNetzbMATHCrossRefGoogle Scholar
  32. 32.
    N. Eckert, M. Naaim, E. Parent, J. Glaciol. 56, 563 (2010)ADSCrossRefGoogle Scholar
  33. 33.
    J. Schweizer, J.B. Jamieson, M. Schneebeli, Rev. Geophys. 41, 1016 (2003)ADSCrossRefGoogle Scholar
  34. 34.
    S.G. Coles, An Introduction to Statistical Modeling of Extreme Values (Springer, London, 2001)Google Scholar
  35. 35.
    J.F. Meffre, Neige Avalanches 81, 22 (1998)Google Scholar
  36. 36.
    C. Ancey, F. Rapin, E. Martin, C. Coleou, M. Naaim, G. Brunot, Houille Blanche 2000/5, 45 (2000)CrossRefGoogle Scholar
  37. 37.
    M. Rousselot, Y. Durand, G. Giraud, L. Mérindol, L. Daniel, J. Glaciol. 56, 758 (2010)ADSCrossRefGoogle Scholar
  38. 38.
    C. Ancey, J. Geophys. Res. 109, F01005 (2004)ADSCrossRefGoogle Scholar
  39. 39.
    B. Sovilla, S. Margreth, P. Bartelt, Cold Reg. Sci. Technol. 47, 69 (2007)CrossRefGoogle Scholar
  40. 40.
    F. Gex, Rev. Geog. Alpine 11, 487 (1923)CrossRefGoogle Scholar
  41. 41.
    C. Ancey, Flow on Steep Slope, in Buoyancy Driven Flows, edited by E. Chassignet, C. Cenedese (Cambridge University Press, New York, 2012)Google Scholar
  42. 42.
    V.F. Pisarenko, D. Sornette, M.V. Rodkin, Pure Appl. Geophys. 165, 847 (2008)ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences and Springer 2012

Authors and Affiliations

  1. 1.École Polytechnique Fédérale de LausanneLausanneSwitzerland

Personalised recommendations