Advertisement

The European Physical Journal Special Topics

, Volume 203, Issue 1, pp 185–192 | Cite as

Quantum estimation of states and operations from incomplete data

  • S. OlivaresEmail author
  • M. G. A. ParisEmail author
Regular Article

Abstract

We review minimum Kullback entropy principle for estimation of quantum states and operations and discuss its application to qubit and harmonic oscillator systems. In particular, we address the estimation of displacement and squeezing operations from incomplete data and show how to estimate the displacement or squeezing amplitude starting from photon-number resolving or on/off photodetection.

Keywords

Density Matrix Harmonic Oscillator Coherent State European Physical Journal Special Topic Relative Entropy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M.G.A. Paris, J. Řeháček, Quantum State Estimation, Lect. Notes Phys. 649 (2004)Google Scholar
  2. 2.
    G.M. D’Ariano, L. Maccone, M.G.A. Paris, J. Phys. A 34, 93 (2001)MathSciNetADSzbMATHCrossRefGoogle Scholar
  3. 3.
    V. Buzek, et al., Chaos Sol. Fract. 10, 981 (1999)MathSciNetzbMATHCrossRefGoogle Scholar
  4. 4.
    V. Bužek, Lect. Notes Phys. 649, 189 (2004)ADSCrossRefGoogle Scholar
  5. 5.
    Z. Hradil, Phys. Rev. A 55, 0R1561 (1997)MathSciNetADSCrossRefGoogle Scholar
  6. 6.
    Z. Hradil, J. Rehacek, J. Fiurasek, M. Jezek, Lect. Notes Phys. 649, 59 (2004)MathSciNetADSCrossRefGoogle Scholar
  7. 7.
    E.T. Jaynes, Phys. Rev. 106, 620 (1957)MathSciNetADSCrossRefGoogle Scholar
  8. 8.
    E.T. Jaynes, Phys. Rev. 108, 171 (1957)MathSciNetADSCrossRefGoogle Scholar
  9. 9.
    V. Vedral, Rev. Mod. Phys. 74, 197 (2002)MathSciNetADSzbMATHCrossRefGoogle Scholar
  10. 10.
    S. Kullback, Ann. Math. Stat. 22, 79 (1951)MathSciNetzbMATHCrossRefGoogle Scholar
  11. 11.
    J.E. Shore, R.W. Johson, IEEE Trans. Inf. Th IT-27, 472 (1981)CrossRefGoogle Scholar
  12. 12.
    E.T. Jaynes, IEEE Trans. Systems Science and Cybernetics SSC-4, 227 (1968)CrossRefGoogle Scholar
  13. 13.
    S. Olivares, M.G.A. Paris, Phys. Rev. A 76, 042120 (2007)ADSCrossRefGoogle Scholar
  14. 14.
    S. Kullback, Ann. Math. Stat. 22, 79 (1951)MathSciNetzbMATHCrossRefGoogle Scholar
  15. 15.
    S. Kullback, Information Theory and Statistics (Wiley, New York, 1959)Google Scholar
  16. 16.
    S. Kullback, A 76, 042120 (2007)Google Scholar
  17. 17.
    J.E. Shore, R.W. Johson, IEEE Trans. Inf. Th IT-26, 26 (1980)ADSCrossRefGoogle Scholar
  18. 18.
    J.E. Shore, R.W. Johson, IEEE Trans. Inf. Th IT-27, 472 (1981)CrossRefGoogle Scholar
  19. 19.
    A.S. Cherny, V.P. Maslov, Theory Probab. Appl. 48, 447 (2004)MathSciNetCrossRefGoogle Scholar
  20. 20.
    M.J. Donald, Comm. Math. Phys. 105, 13 (1986)MathSciNetADSzbMATHCrossRefGoogle Scholar
  21. 21.
    M.J. Donald, Found. Phys. 22, 1111 (1992)MathSciNetADSCrossRefGoogle Scholar
  22. 22.
    G.L. Bilbro, W.E. Snyder, R.C. Mann, J. Opt. Soc. Am. A 8, 290 (1991)ADSCrossRefGoogle Scholar
  23. 23.
    A.D. Woodbury, T.J. Ulrych, Wat. Res. Res. 29, 2847 (1993)CrossRefGoogle Scholar
  24. 24.
    A.D. Woodbury, T.J. Ulrych, Wat. Res. Res. 32, 2671 (1996)CrossRefGoogle Scholar
  25. 25.
    G.U. Schreiber, et al., Phys. Lett. B 284, 6 (1992)MathSciNetADSCrossRefGoogle Scholar
  26. 26.
    A.R. Plastino, et al., Phys. Rev. E 56, 3927 (1997)MathSciNetADSCrossRefGoogle Scholar
  27. 27.
    S.L. Braunstein, Phys. Lett. A 219, 169 (1996)MathSciNetADSzbMATHCrossRefGoogle Scholar
  28. 28.
    S.L. Braunstein, C.M. Caves, Phys. Rev. Lett. 72, 3439 (1994)MathSciNetADSzbMATHCrossRefGoogle Scholar
  29. 29.
    G.M. D’Ariano, M.G.A. Paris, M.F. Sacchi, Adv. Im. Electron. Phys. 128, 205 (2003)CrossRefGoogle Scholar
  30. 30.
    Being the qubit Hilbert space two-dimensional the measurements of the mean value and of the complete probability distribution give the same amount of informationGoogle Scholar
  31. 31.
    D. Mogilevtsev, Opt. Comm. 156, 307 (1998)ADSCrossRefGoogle Scholar
  32. 32.
    D. Mogilevtsev, Acta Phys. Slov. 49, 743 (1999)Google Scholar
  33. 33.
    A.R. Rossi, S. Olivares, M.G.A. Paris, Phys. Rev. A 70, 055801 (2004)ADSCrossRefGoogle Scholar
  34. 34.
    A.R. Rossi, M.G.A. Paris, Eur. Phys. J. D 32, 223 (2005)ADSCrossRefGoogle Scholar
  35. 35.
    G. Zambra, et al., Phys. Rev. Lett. 95, 063602 (2005)ADSCrossRefGoogle Scholar
  36. 36.
    M. Gramegna, et al., Laser. Phys. 16, 385 (2006)ADSCrossRefGoogle Scholar
  37. 37.
    J. Řeháček, Z. Hradil, O. Haderka, J. Peřina, Jr., M. Hamar, Phys. Rev. A 67, 061801(R) (2003)ADSGoogle Scholar
  38. 38.
    O. Haderka, M. Hamar, J. Peřina, Eur. Phys. J. D 28 (2004)Google Scholar
  39. 39.
    K. Banaszek, I.A. Walmsley, Opt. Lett. 28, 52 (2003)ADSCrossRefGoogle Scholar
  40. 40.
    M. Bondani, A. Allevi, A. Agliati, A. Andreoni, J. Mod. Opt. 56, 226 (2009)ADSCrossRefGoogle Scholar
  41. 41.
    A. Allevi, A. Andreoni, F.A. Beduini, M. Bondani, M.G. Genoni, S. Olivares, M.G.A. Paris, EPL 92, 20007 (2010)ADSCrossRefGoogle Scholar
  42. 42.
    A. Allevi, A. Andreoni, M. Bondani, M.G. Genoni, S. Olivares, Phys. Rev. A 82, 013816 (2010)ADSCrossRefGoogle Scholar
  43. 43.
    M.G. Genoni, M.G.A. Paris, K. Banaszek, Phys. Rev. A 78, 060303(R) (2008)MathSciNetADSGoogle Scholar
  44. 44.
    M.G. Genoni, M.G.A. Paris, Phys. Rev. A 82, 052341 (2010)ADSCrossRefGoogle Scholar
  45. 45.
    E.H. Moore, Bull. Amer. Math. Soc. 26, 394 (1920)Google Scholar
  46. 46.
    R. Penrose, Proc. Camb. Phil. Soc. 51, 406 (1955)MathSciNetADSzbMATHCrossRefGoogle Scholar

Copyright information

© EDP Sciences and Springer 2012

Authors and Affiliations

  1. 1.Dipartimento di FisicaUniversità degli Studi di TriesteTriesteItaly
  2. 2.Dipartimento di Fisica dell’Università di MilanoMilanoItaly
  3. 3.CNISM, UdR Milano StataleMilanoItaly

Personalised recommendations