The European Physical Journal Special Topics

, Volume 203, Issue 1, pp 163–183 | Cite as

The coherent interaction between matter and radiation

A tutorial on the Jaynes-Cummings model


The Jaynes-Cummings (JC) model is a milestone in the theory of coherent interaction between a two-level system and a single bosonic field mode. This tutorial, structured in a pedagogical way, aims to give a detailed description of the model, analyzing the Hamiltonian of the system, its eigenvalues and eigestates, in order to characterize the dynamics of system and subsystems. The Rabi oscillations, together with the collapse and revival effects, are distinguishing features of the JC model and are important for applications in Quantum Information theory. The framework of cavity quantum electrodynamics (cQED) is chosen and two fundamental experiments on the coherent interaction between Rydberg atoms and a single cavity field mode are described.


Entangle State European Physical Journal Special Topic Density Operator Rabi Frequency Rydberg Atom 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    E.T. Jaynes, F.W. Cummings, Proc. IEEE 51, 89 (1963)CrossRefGoogle Scholar
  2. 2.
    H. Mabuchi, A.C. Doherty, Science 298, 1372 (2002)ADSCrossRefGoogle Scholar
  3. 3.
    B.W. Shore, P.L. Knight, J. Mod. Opt. 40, 1195 (1993)MathSciNetADSzbMATHCrossRefGoogle Scholar
  4. 4.
    G. Rempe, H. Walther, N. Klein, Phys. Rev. Lett. 58, 353 (1987)ADSCrossRefGoogle Scholar
  5. 5.
    M. Brune, et al., Phys. Rev. Lett. 76, 1800 (1996)ADSCrossRefGoogle Scholar
  6. 6.
    E. Hagley, et al., Phys. Rev. Lett. 79, 1 (1997)ADSCrossRefGoogle Scholar
  7. 7.
    D. Leibfried, R. Blatt, C. Monroe, D. Wineland, Rev. Mod. Phys. 75, 281 (2003)ADSCrossRefGoogle Scholar
  8. 8.
    G. Khitrova, H.M. Gibbs, M. Kira, S.W. Koch, A. Scherer, Nat. Phys. 2, 81 (2006)CrossRefGoogle Scholar
  9. 9.
    A. Blais, R.-S. Huang, A. Wallraff, S.M. Girvin, R.J. Schoelkopf, Phys. Rev. A 69, 062320 (2004)ADSCrossRefGoogle Scholar
  10. 10.
    J.R. Kuklinski, J.L. Madajczyk, Phys. Rev. A 37, 3175 (1988)ADSCrossRefGoogle Scholar
  11. 11.
    J. Gea-Banacloche, Phys. Rev. A 47, 2221 (1993)ADSCrossRefGoogle Scholar
  12. 12.
    A. Kundu, Theor. Math. Phys 144, 975 (2005)MathSciNetzbMATHCrossRefGoogle Scholar
  13. 13.
    V. Hussin, L.M. Nieto, J. Math. Phys. 46, 122102 (2005)MathSciNetADSCrossRefGoogle Scholar
  14. 14.
    E. Solano, G. Agarwal, H. Walther, Phys. Rev. Lett. 90, 027903 (2003)ADSCrossRefGoogle Scholar
  15. 15.
    P. Lougovski, F. Casagrande, A. Lulli, E. Solano, Phys. Rev. A 76, 033802 (2007)ADSCrossRefGoogle Scholar
  16. 16.
    M. Bina, F. Casagrande, A. Lulli, E. Solano, Phys. Rev. A 77, 03383 (2008)CrossRefGoogle Scholar
  17. 17.
    M. Bina, F. Casagrande, A. Lulli, Eur. Phys. J. D 49, 257 (2008)ADSCrossRefGoogle Scholar
  18. 18.
    M.A. Nielsen, I.L. Chuang, Quantum Computation and Quantum Information (Cambridge University Press, 2000)Google Scholar
  19. 19.
    J. Casanova, G. Romero, I. Lizuain, J.J. Garcìa-Ripoll, E. Solano, Phys. Rev. Lett. 105, 263603 (2010)ADSCrossRefGoogle Scholar
  20. 20.
    E.K. Irish, Phys. Rev. Lett. 99, 173601 (2007)ADSCrossRefGoogle Scholar
  21. 21.
    S. De Liberato, C. Ciuti, I. Carusotto, Phys. Rev. Lett. 98, 103602 (2007)ADSCrossRefGoogle Scholar
  22. 22.
    T. Niemczyk, et al., Nature Phys. 6, 772 (2010)ADSCrossRefGoogle Scholar
  23. 23.
    P. Forn-Dìaz, et al., Phys. Rev. Lett. 105, 237001 (2010)ADSCrossRefGoogle Scholar
  24. 24.
    R.J. Thompson, G. Rempe, H.J. Kimble, Phys. Rev. Lett. 68, 1132 (1992)ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences and Springer 2012

Authors and Affiliations

  1. 1.Dipartimento di Scienza e Alta Tecnologia, Università degli Studi dell’InsubriaComoItaly

Personalised recommendations