Advertisement

The European Physical Journal Special Topics

, Volume 203, Issue 1, pp 127–136 | Cite as

Controlled generation of momentum states in a high-finesse ring cavity

  • N. PiovellaEmail author
Regular Article

Abstract

A Bose-Einstein condensate in a high-finesse ring cavity scatters the photons of a pump beam into counterpropagating cavity modes, populating a bi-dimensional momentum lattice. A high-finesse ring cavity with a sub-recoil linewidth allows to control the quantized atomic motion, selecting particular discrete momentum states and generating atom-photon entanglement. The semiclassical and quantum model for the 2D collective atomic recoil lasing (CARL) are derived and the superradiant and good-cavity regimes discussed. For pump incidence perpendicular to the cavity axis, the momentum lattice is symmetrically populated. Conversely, for oblique pump incidence the motion along the two recoil directions is unbalanced and different momentum states can be populated on demand by tuning the pump frequency.

Keywords

European Physical Journal Special Topic Cavity Mode Ring Cavity Momentum State Cavity Axis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ph.W. Courteille, V.S. Bagnato, V.I. Yukalov, Laser Phys. 11, 659 (2001)Google Scholar
  2. 2.
    S. Inouye, A.M. Chikkatur, D.M. Stamper-Kurn, et al., Science 285, 571 (1999)CrossRefGoogle Scholar
  3. 3.
    L. Fallani, C. Fort, N. Piovella, M.M. Cola, F.S. Cataliotti, M. Inguscio, R. Bonifacio, Phys. Rev. A 71, 033612 (2005)ADSCrossRefGoogle Scholar
  4. 4.
    S. Slama, S. Bux, G. Krenz, C. Zimmermann, Ph.W. Courteille, Phys. Rev. Lett. 98, 053603 (2007)ADSCrossRefGoogle Scholar
  5. 5.
    F. Brennecke, et al., Nature (London) 450, 268 (2007)ADSCrossRefGoogle Scholar
  6. 6.
    K. Baumann, et al., Nature (London) 464, 1301 (2010)ADSCrossRefGoogle Scholar
  7. 7.
    S. Bux, C. Gnahm, R.A.W. Maier, C. Zimmermann, Ph.W. Courteille, Phys. Rev. Lett. 106, 203601 (2011)ADSCrossRefGoogle Scholar
  8. 8.
    R. Bonifacio, L. De Salvo Souza, Nucl. Instrum. Methods Phys. Res. A 341, 360 (1994)ADSCrossRefGoogle Scholar
  9. 9.
    Ch. von Cube, C. Zimmermann, Ph.W. Courteille, Phys. Rev. Lett. 91, 183601 (2003)ADSCrossRefGoogle Scholar
  10. 10.
    S. Slama, G. Krenz, S. Bux, C. Zimmermann, Ph.W. Courteille, Phys. Rev. A 75, 063620 (2007)ADSCrossRefGoogle Scholar
  11. 11.
    J. Madey, J. Appl. Phys. 42, 1906 (1971)ADSCrossRefGoogle Scholar
  12. 12.
    R. Bonifacio, C. Pellegrini, L. Narducci, Opt. Commun. 50, 373 (1984)ADSCrossRefGoogle Scholar
  13. 13.
    R. Bonifacio, F. Casagrande, G. Cerchioni, L. De Salvo Souza, P. Pierini, N. Piovella, Riv. Nuovo Cimento 13 (9) (1990)Google Scholar
  14. 14.
    R. Bonifacio, F. Casagrande, Opt. Commun. 50, 251 (1984)ADSCrossRefGoogle Scholar
  15. 15.
    R. Bonifacio, F. Casagrande, J. Opt. Soc. Am. B 2, 250 (1985)ADSCrossRefGoogle Scholar
  16. 16.
    N. Piovella, M. Gatelli, R. Bonifacio, Opt. Commun. 194, 167 (2001)ADSCrossRefGoogle Scholar
  17. 17.
    N. Piovella, M. Gatelli, L. Martinucci, R. Bonifacio, B.W.J. McNeil, G.R.M. Robb, Laser Phys. 12, 188 (2002)Google Scholar
  18. 18.
    N. Piovella, M.M. Cola, R. Bonifacio, Phys. Rev. A 67, 013817 (2003)ADSCrossRefGoogle Scholar
  19. 19.
    M.M. Cola, M.G.A. Paris, N. Piovella, Phys. Rev. A 70, 043809 (2004)ADSCrossRefGoogle Scholar
  20. 20.
    G.M. Moore, P. Meystre, Phys. Rev. Lett. 83, 5202 (1999)ADSCrossRefGoogle Scholar
  21. 21.
    O.E. Mustecaplioglu, L. You, Phys. Rev. A 62, 063615 (2000)ADSCrossRefGoogle Scholar
  22. 22.
    auE.D. Trifonov, JETP 93, 969 (2001)ADSCrossRefGoogle Scholar
  23. 23.
    N. Piovella, Laser Physics 13, 611 (2003)Google Scholar
  24. 24.
    O. Zobay, G.M. Nikolopoulos, Phys. Rev. A 72, 041604(R) (2005)ADSCrossRefGoogle Scholar
  25. 25.
    O. Zobay, G.M. Nikolopoulos, Phys. Rev. A 73, 013620 (2006)ADSCrossRefGoogle Scholar
  26. 26.
    A. Hilliard, F. Kaminski, R. le Targat, C. Olausson, E.S. Polzik, J.H. Müller, Phys. Rev. A 78, 051403(R) (2008)ADSCrossRefGoogle Scholar
  27. 27.
    B. Lu, X. Zhou, T. Vogt, Z. Fang, X. Chen, Phys. Rev. A 83, 033620 (2011)ADSCrossRefGoogle Scholar
  28. 28.
    N. Bar-Gill, E.E. Rowen, N. Davidson, Phys. Rev. A 76, 043603 (2007)ADSCrossRefGoogle Scholar
  29. 29.
    F. Yang, X. Zhou, J. Li, Y. Chen, L. Xia, X. Chen, Phys. Rev. A 78, 043611 (2008)ADSCrossRefGoogle Scholar
  30. 30.
    M.M. Cola, L. Volpe, N. Piovella, Phys. Rev. A 79, 013613 (2009)ADSCrossRefGoogle Scholar
  31. 31.
    M.M. Cola, D. Bigerni, N. Piovella, Phys. Rev. A 79, 053622 (2009)ADSCrossRefGoogle Scholar
  32. 32.
    D. Porras, J.I. Cirac, Phys. Rev. A 78, 053816 (2008)ADSCrossRefGoogle Scholar
  33. 33.
    A. Crubellier, S. Liberman, D. Pavolini, P. Pillet, J. Phys. B: At. Mol. Phys. 18, 3811 (1985)MathSciNetADSCrossRefGoogle Scholar
  34. 34.
    A. Crubellier, D. Pavolini, J. Phys. B: At. Mol. Phys. 19, 2109 (1986)ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences and Springer 2012

Authors and Affiliations

  1. 1.Dipartimento di FisicaUniversità degli Studi di MilanoMilanoItaly

Personalised recommendations