Advertisement

The European Physical Journal Special Topics

, Volume 200, Issue 1, pp 183–209 | Cite as

Constrained molecular dynamics in the isothermal-isobaric ensemble and its adaptation for adiabatic free energy dynamics

  • T. -Q. YuEmail author
  • M. E. TuckermanEmail author
Review

Abstract

The implementation of holonomic constraints within measure-preserving integrators for molecular dynamics simulations in the isothermal-isobaric ensemble is considered. We review the basic methodology of generating measure-preserving integrators for the microcanonical, canonical, and isothermal-isobaric ensembles and proceed to show how the standard SHAKE and RATTLE algorithms must be modified for the isothermal-isobaric ensemble. Comparison is made between constrained and unconstrained simulations employing multiple time scale integration techniques. Finally, we describe a temperature accelerated version of the isothermal-isobaric molecular dynamics approach, in which the cell matrix is adiabatically decoupled from the particles and maintained at a high temperature as a means of exploring polymorphism in molecular crystals. We demonstrate that constraints can be easily adapted for this new approach and, again, we compare the performace of this temperature-accelerated scheme with and without bond constraints.

Keywords

European Physical Journal Special Topic Molecular Simulation Liouville Operator Holonomic Constraint Multiplier Correction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    G.J. Martyna, D.J. Tobias, M.L. Klein, J. Chem. Phys. 101, 4177 (1994)CrossRefADSGoogle Scholar
  2. 2.
    J.P. Ryckaert, G. Ciccotti, H.J.C. Berendsen, J. Comput. Phys. 23, 327 (1977)CrossRefADSGoogle Scholar
  3. 3.
    H.C. Andersen, J. Comput. Phys. 52, 24 (1983)CrossRefzbMATHADSGoogle Scholar
  4. 4.
    G.J. Martyna, M.E. Tuckerman, D.J. Tobias, M.L. Klein, Mol. Phys. 87, 1117 (1996)CrossRefADSGoogle Scholar
  5. 5.
    M.E. Tuckerman, J. Alejandre, R. López-Rendón, A.L. Jochim, G.J. Martyna, J. Phys. A: Math. Gen. 39, 5629 (2006)CrossRefzbMATHADSGoogle Scholar
  6. 6.
    T.Q. Yu, J. Alejandre, R. López-Rendón, G.J. Martyna, M.E. Tuckerman, Chem. Phys. 370, 294 (2010)CrossRefADSGoogle Scholar
  7. 7.
    M.E. Tuckerman, G.J. Martyna, B.J. Berne, J. Chem. Phys. 97, 1990 (1992)CrossRefADSGoogle Scholar
  8. 8.
    L. Rosso, P. Minary, Z. Zhu, M.E. Tuckerman, J. Chem. Phys. 116, 4389 (2002)CrossRefADSGoogle Scholar
  9. 9.
    T.Q. Yu, M.E. Tuckerman, Phys. Rev. Lett. 107, 015701 (2011)CrossRefADSGoogle Scholar
  10. 10.
    L. Maragliano, E. Vanden-Eijnden, Chem. Phys. Lett. 426, 168 (2006)CrossRefADSGoogle Scholar
  11. 11.
    J.B. Abrams, M.E. Tuckerman, J. Phys. Chem. B 112, 15742 (2008)CrossRefGoogle Scholar
  12. 12.
    H.F. Trotter, Proc. Am. Math. Soc. 10, 545 (1959)CrossRefzbMATHMathSciNetGoogle Scholar
  13. 13.
    M. Creutz, A. Goksch, Phys. Rev. Lett. 63, 1989 (2010)Google Scholar
  14. 14.
    M.E. Tuckerman, Statistical Mechanics: Theory and Molecular Simulation (Oxford University Press, Great Clarendon Street, Oxford OX2 6DP, 2010)Google Scholar
  15. 15.
    H. Andersen, J. Chem. Phys. 72, 2384 (1980)CrossRefADSGoogle Scholar
  16. 16.
    G.J. Martyna, M.E. Tuckerman, M.L. Klein, J. Chem. Phys. 97, 2635 (1992)CrossRefADSGoogle Scholar
  17. 17.
    M.E. Tuckerman, C.J. Mundy, G.J. Martyna, Europhys. Lett. 45, 149 (1999)CrossRefADSGoogle Scholar
  18. 18.
    M.E. Tuckerman, Y. Liu, G. Ciccotti, G.J. Martyna, J. Chem. Phys. 115, 1678 (2001)CrossRefADSGoogle Scholar
  19. 19.
    W.G. Hoover, Phys. Rev. A 31, 1695 (1985)CrossRefADSGoogle Scholar
  20. 20.
    W.G. Hoover, Phys. Rev. A 34, 2499 (1986)CrossRefADSMathSciNetGoogle Scholar
  21. 21.
    H. Yoshida, Phys. Lett. A 150, 262 (1990)CrossRefADSMathSciNetGoogle Scholar
  22. 22.
    M. Suzuki, J. Math. Phys. 32, 400 (1991)CrossRefzbMATHADSMathSciNetGoogle Scholar
  23. 23.
    M.E. Tuckerman, G.J. Martyna, J. Chem. Phys. 110, 3623 (1999)CrossRefADSGoogle Scholar
  24. 24.
    R.D. Engle, R.D. Skeel, M. Drees, J. Comput. Phys. 206, 432 (2005)CrossRefzbMATHADSMathSciNetGoogle Scholar
  25. 25.
    M.E. Tuckerman, M. Parrinello, J. Chem. Phys. 101, 1302 (1994)CrossRefADSGoogle Scholar
  26. 26.
    Y. Liu, M.E. Tuckerman, J. Chem. Phys. 112, 1685 (2000)CrossRefADSGoogle Scholar
  27. 27.
    G.S. Ezra, J. Chem. Phys. 125, 034104 (2006)CrossRefADSGoogle Scholar
  28. 28.
    G.J. Martyna, D.J. Tobias, M.L. Klein, J. Chem. Phys. 101, 4177 (1994)CrossRefADSGoogle Scholar
  29. 29.
    J.B. Sturgeon, B.B. Laird, J. Chem. Phys. 112, 3474 (2000)CrossRefADSGoogle Scholar
  30. 30.
    S. Nosé, J. Chem. Phys. 81, 511 (1984)CrossRefADSGoogle Scholar
  31. 31.
    S.D. Bond, B.J. Leimkuhler, B.B. Laird, J. Comput. Phys. 151, 114 (1999)CrossRefzbMATHADSMathSciNetGoogle Scholar
  32. 32.
    B.J. Leimkuhler, C.R. Sweet, J. Chem. Phys. 121, 108 (2004)CrossRefADSGoogle Scholar
  33. 33.
    T. Schlick, M. Mandzuik, R.D. Skeel, K. Srinivas, J. Comput. Phys. 140, 1 (1998)CrossRefzbMATHADSMathSciNetGoogle Scholar
  34. 34.
    Q. Ma, J.A. Izaguirre, R.D. Skeel, SIAM J. Sci. Comput. 24, 1951 (2003)CrossRefzbMATHMathSciNetGoogle Scholar
  35. 35.
    P. Minary, M.E. Tuckerman, G.J. Martyna, Phys. Rev. Lett. 93, 150201 (2004)CrossRefADSGoogle Scholar
  36. 36.
    D. van der Spoel, A.R. Buuren, D.P. Tieleman, H.J.C. Berendsen, J. Biomol. NMR. 8, 229 (1996)CrossRefGoogle Scholar
  37. 37.
    U. Essmann, L. Perera, M.L. Berkowitz, T. Darden, H. Lee, L.G. Pedersen, J. Chem. Phys. 103, 8577 (1995)CrossRefADSGoogle Scholar
  38. 38.
    M.E. Tuckerman, D.A. Yarne, S.O. Samuelson, G.J. Hughes, A.L. Martyna, Comput. Phys. Commun. 128, 333 (2000)CrossRefzbMATHADSGoogle Scholar
  39. 39.
    V. Kraeutler, W.F. van Gunsteren, P.H. Huenenberger, J. Comput. Chem. 22, 501 (2001)CrossRefGoogle Scholar
  40. 40.
    R.H. Swendsen, Wang J.S., Phys. Rev. Lett. 57, 2607 (1986)CrossRefADSMathSciNetGoogle Scholar
  41. 41.
    K. Hukushima, Nemoto K., J. Phys. Soc. Jpn. 65, 1604 (1996)CrossRefADSGoogle Scholar
  42. 42.
    M. Tesi, E.J.J. Rensburg, E. Orlandini, S.G. Whittington, J. Stat. Phys. 82, 155 (1996)CrossRefzbMATHADSGoogle Scholar
  43. 43.
    P. Liu, B. Kim, R.A. Friesner, B.J. Berne, Proc. Natl. Acad. Sci. U.S.A. 102, 13749 (2005)CrossRefADSGoogle Scholar
  44. 44.
    C.J. Woods, J.W. Essex, M.A. King, J. Phys. Chem. B 107, 13703 (2003)CrossRefGoogle Scholar
  45. 45.
    C.J. Woods, J.W. Essex, M.A. King, J. Phys. Chem. B 107, 13711 (2003)CrossRefGoogle Scholar
  46. 46.
    A.F. Voter, Phys. Rev. Lett. 78, 3908 (1997)CrossRefADSGoogle Scholar
  47. 47.
    A.F. Voter, Phys. Rev. B 57, R13985 (1998)CrossRefADSGoogle Scholar
  48. 48.
    F.G. Wang, D.P. Landau, Phys. Rev. Lett. 86, 2050 (2001)CrossRefADSGoogle Scholar
  49. 49.
    F.G. Wang, D.P. Landau, Phys. Rev. E 64, 056101 (2001)CrossRefADSGoogle Scholar
  50. 50.
    J.I. Siepmann, D. Frenkel, Mol. Phys. 75, 59 (1992)CrossRefADSGoogle Scholar
  51. 51.
    Z. Zhu, M.E. Tuckerman, S.O. Samuelson, G.J. Martyna, Phys. Rev. Lett. 88, 100201 (2002)CrossRefADSGoogle Scholar
  52. 52.
    L. Rosso, M.E. Tuckerman, Mol. Simulat. 28, 91 (2002)CrossRefGoogle Scholar
  53. 53.
    A. Laio, M. Parrinello, Proc. Natl. Acad. Sci. 99, 12562 (2002)CrossRefADSGoogle Scholar
  54. 54.
    P. Minary, M.E. Tuckerman, G.J. Martyna, SIAM J. Sci. Comput. 30, 2055 (2007)CrossRefMathSciNetGoogle Scholar
  55. 55.
    J. Bernstein, Polymorphism in Molecular Crystals (Oxford University Press, Great Clarendon Street, Oxford OX2 6DP, 2002)Google Scholar
  56. 56.
    S.M. Woodley, R. Catlow, Nat. Mater. 7, 937 (2008)CrossRefADSGoogle Scholar
  57. 57.
    P. Raiteri, R. Martoňák, M. Parrinello, Angew. Chem. Int. Ed. 44, 3769 (2005)CrossRefGoogle Scholar
  58. 58.
    J.D. Dunitz, H.A. Scheraga, Proc. Natl. Acad. Sci. 101, (2004) 14309CrossRefADSGoogle Scholar
  59. 59.
    G. Kalibaeva, M. Ferrario, G. Ciccotti, Molecular Physics 101, 765 (2003)CrossRefADSGoogle Scholar
  60. 60.
    M.E. Tuckerman, J. Alejandre, R. Lopez-Rendon, A.L. Jochim, G.J. Martyna, J. Phys. A 39, 5629 (2006)CrossRefzbMATHADSMathSciNetGoogle Scholar

Copyright information

© EDP Sciences and Springer 2011

Authors and Affiliations

  1. 1.Department of ChemistryNew York UniversityNew YorkUSA
  2. 2.Department of Chemistry and Courant Institute of Mathematical SciencesNew York UniversityNew YorkUSA

Personalised recommendations