The European Physical Journal Special Topics

, Volume 200, Issue 1, pp 153–181 | Cite as

Ambient space formulations and statistical mechanics of holonomically constrained Langevin systems

Review

Abstract

The most classic approach to the dynamics of an n-dimensional mechanical system constrained by d independent holonomic constraints is to pick explicitly a new set of (nd) curvilinear coordinatesparametrizingthe manifold of configurations satisfying the constraints, and to compute the Lagrangian generating the unconstrained dynamics in these (nd) configuration coordinates. Starting from this Lagrangian an unconstrained Hamiltonian H(q,p) on 2(nd) dimensional phase space can then typically be defined in the standard way via a Legendre transform. Furthermore, if the system is in contact with a heat bath, the associated Langevin and Fokker-Planck equations can be introduced. Provided that an appropriate fluctuation-dissipation condition is satisfied, there will be a canonical equilibrium distribution of the Gibbs form exp(−βH) with respect to the flat measure dqdp in these 2(nd) dimensional curvilinear phase space coordinates. The existence of (nd) coordinates satisfying the constraints is often guaranteed locally by an implicit function theorem. Nevertheless in many examples these coordinates cannot be constructed in any tractable form, even locally, so that other approaches are of interest. In ambient space formulations the dynamics are defined in the full original n-dimensional configuration space, and associated 2n-dimensional phase space, with some version of Lagrange multipliers introduced so that the 2(nd) dimensional sub-manifold of phase space implied by the holonomic constraints and their time derivative, is invariant under the dynamics. In this article we review ambient space formulations, and explain that for constrained dynamics there is in fact considerable freedom in how a Hamiltonian form of the dynamics can be constructed. We then discuss and contrast the Langevin and Fokker-Planck equations and their equilibrium distributions for the different forms of ambient space dynamics.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    E.A. Carter, G. Ciccotti, J.T. Hynes, R. Kapral, Chem. Phys. Lett. 156, 472 (1989)CrossRefADSGoogle Scholar
  2. 2.
    G. Ciccotti, R. Kapral, E. Vanden-Eijnden, Chem. Phys. Chem. 6, 1809 (2005)CrossRefGoogle Scholar
  3. 3.
    D. Dichmann, J.H. Maddocks, Nonlinear Science 6, 271 (1996)CrossRefMATHADSMathSciNetGoogle Scholar
  4. 4.
    D. Dichmann, J.H. Maddocks, R. Pego, Arch. Rational Mech. Anal. 135, 357 (1996)CrossRefMATHADSMathSciNetGoogle Scholar
  5. 5.
    P. Dirac, Generalized Hamiltonian dynamics, Can. J. Math. 2, 129 (1950)MATHMathSciNetGoogle Scholar
  6. 6.
    P. Dirac, Generalized Hamiltonian dynamics, Proc. R. Soc. A 246, 326 (1958)MATHADSMathSciNetGoogle Scholar
  7. 7.
    W. E, E. Vanden-Eijnden, in Multiscale, Modelling, and Simulation, edited by S. Attinger, P. Koumoutsakos (Springer, Berlin, 2004), p. 35Google Scholar
  8. 8.
    L. Evans, R. Gariepy, Measure Theory and Fine Properties of Functions (CRC Press, 1992)Google Scholar
  9. 9.
    H. Federer, Geometric Measure Theory (Springer, 1969)Google Scholar
  10. 10.
    O. Gonzalez, J.H. Maddocks, R. Pego, Arch. Rational Mech. Anal. 157, 285 (2001)CrossRefMATHADSMathSciNetGoogle Scholar
  11. 11.
    C. Hartmann, Ph.D. thesis, Free University Berlin, 2007Google Scholar
  12. 12.
    C. Hartmann, J. Latorre, G. Ciccotti, Eur. Phys. J. Special Topics 200, 79 (2011)CrossRefADSGoogle Scholar
  13. 13.
    C. Hartmann, J. Latorre, C. Schütte, Proc. Comp. Sci. 1, 1591 (2010)Google Scholar
  14. 14.
    C. Hartmann, C. Schütte, ZAMM 85, 700 (2005)CrossRefMATHGoogle Scholar
  15. 15.
    C. Hartmann, C. Schütte, G. Ciccotti, J. Chem. Phys. 132, 111103 (2010)CrossRefADSGoogle Scholar
  16. 16.
    H. Hotelling, Biometrika 28, 321 (1936)MATHGoogle Scholar
  17. 17.
    C. Ipsen, C. Meyer, Am. Math. Mon. 102, 904 (1995)CrossRefMATHMathSciNetGoogle Scholar
  18. 18.
    B. Kallemov, G. H. Miller, SIAM J. Sci. Comput. 33, 653 (2011)CrossRefMATHMathSciNetGoogle Scholar
  19. 19.
    R. Kupferman, J. Stat. Phys. 114, 291 (2004)CrossRefMATHADSMathSciNetGoogle Scholar
  20. 20.
    T. Lelièvre, M. Rousset, G. Stoltz., Free Energy Computations: A Mathematical Perspective (Imperial College Press, 2010)Google Scholar
  21. 21.
    T. Lelièvre, M. Rousset, G. Stoltz, Math. Comp. (to appear) (2011)Google Scholar
  22. 22.
    J.H. Maddocks, R. Pego, Commun. Math. Phys. 170, 207 (1995)CrossRefMATHADSMathSciNetGoogle Scholar
  23. 23.
    J. Marsden, T. Ratiu, Introduction to Mechanics and Symmetry (Springer, New York, 1999)Google Scholar
  24. 24.
    J. Mattingly, A. Stuart, Markov Process. Related Fields 8, 199 (2001)MathSciNetGoogle Scholar
  25. 25.
    J. Mattingly, A. Stuart, D. Higham, Stochastic Process. Appl. 101, 185 (2002)CrossRefMATHMathSciNetGoogle Scholar
  26. 26.
    J. Miao, A. Ben-Israel, Linear Algebra Appl. 171, 81 (1992)CrossRefMATHMathSciNetGoogle Scholar
  27. 27.
    G. Milstein, M. Tretyakov, IMA J. Numer. Anal. 23, 593 (2003)CrossRefMATHMathSciNetGoogle Scholar
  28. 28.
    B. Øksendal, Stochastic Differential Equations, 5th edn. (Springer, Berlin, Heidelberg, 1998)Google Scholar
  29. 29.
    M. Tuckerman, Y. Liu, G. Ciccotti, G. Martyna, J. Chem. Phys. 115, 1678 (2001)CrossRefADSGoogle Scholar
  30. 30.
    W.F. van Gunsteren, H.J.C. Berendsen, J.A.C. Rullmann, Molec. Phys. 44, 69 (1981)CrossRefADSGoogle Scholar
  31. 31.
    E. Vanden-Eijnden, G. Ciccotti, Chem. Phys. Lett. 429, 310 (2006)CrossRefADSGoogle Scholar
  32. 32.
    J. Walter, O. Gonzalez, J.H. Maddocks, Multisc. Model. Simul. 8, 1018 (2010)CrossRefMATHMathSciNetGoogle Scholar
  33. 33.
    P. Wedin, in Matrix Pencils, Vol. 973 of Lecture Notes in Mathematics, edited by B.Kågström, A. Ruhe (Springer, Berlin Heidelberg, 1983), p. 263Google Scholar

Copyright information

© EDP Sciences and Springer 2011

Authors and Affiliations

  1. 1.LCVMM, École Polytechnique Fédérale de LausanneLausanneSwitzerland
  2. 2.Institut für MathematikFreie Universität BerlinBerlinGermany

Personalised recommendations