The European Physical Journal Special Topics

, Volume 200, Issue 1, pp 131–152 | Cite as

Stochastic-dynamical thermostats for constraints and stiff restraints

Regular Article


A broad array of canonical sampling methods are available for molecular simulation based on stochastic-dynamical perturbation of Newtonian dynamics, including Langevin dynamics, Stochastic Velo- city Rescaling, and methods that combine Nosé-Hoover dynamics with stochastic perturbation. In this article we discuss several stochastic-dynamical thermostats in the setting of simulating systems with holonomic constraints. The approaches described are easily implemented and facilitate the recovery of correct canonical averages with minimal disturbance of the underlying dynamics. For the purpose of illustrating our results, we examine the numerical application of these methods to a simple atomic chain, where a Fixman term is required to correct the thermodynamic ensemble.


Autocorrelation Function Tangent Space European Physical Journal Special Topic Molecular Simulation Hamiltonian Dynamic 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    G. Bussi, D. Donadio, M. Parrinello, J. Chem. Phys. 126, 014101 (2007)CrossRefADSGoogle Scholar
  2. 2.
    G. Bussi, M. Parrinello, Comp. Phys. Comm. 179, 26 (2008)CrossRefADSGoogle Scholar
  3. 3.
    W.K. den Otter, W. Briels, J. Chem. Phys. 106, 13 (1997)CrossRefGoogle Scholar
  4. 4.
    M. Cassandro, G. Ciccotti, V. Rosato, J.P. Ryckaert, Statistical mechanics of rigid systems: an atomic description, unpublished noteGoogle Scholar
  5. 5.
    G. Ciccotti, J.P. Ryckaert, Comp. Phys. Reports 4, 346 (1986)CrossRefADSGoogle Scholar
  6. 6.
    G. Ciccotti, R. Kapral, E. Vanden-Eijnden, Chem. Phys. Chem. 6, 1809 (2005)CrossRefGoogle Scholar
  7. 7.
    E. Darve, Ph.D. thesis, Université Paris VI (1999)Google Scholar
  8. 8.
    W.E.W. Ren, E. Vanden-Eijnden, Phys. Rev. B 66, 052301 (2002)ADSGoogle Scholar
  9. 9.
    M. Fixman, P. Nat. Acad. Sci. 71, 3050 (1974)CrossRefADSGoogle Scholar
  10. 10.
    M. Fixman, J. Chem. Phys. 69, 1527 (1978)CrossRefADSGoogle Scholar
  11. 11.
    J. Frank, G.A. Gottwald, J. Stat. Phys. 143, 715 (2011)CrossRefMATHADSMathSciNetGoogle Scholar
  12. 12.
    N. Go, H.A. Scheraga, J. Chem. Phys. 51, 4751 (1969)CrossRefADSGoogle Scholar
  13. 13.
    N. Go, H.A. Scheraga, Macromolecules 9, 535 (1976)CrossRefADSGoogle Scholar
  14. 14.
    A. Jones, B. Leimkuhler (2011) (submitted)Google Scholar
  15. 15.
    N.G. van Kampen, Appl. Sci. Res. 37, 67 (1981)CrossRefMATHMathSciNetGoogle Scholar
  16. 16.
    N.G. van Kampen, J.J. Lodder, Am. J. Phys. 52, 419 (1984)CrossRefADSGoogle Scholar
  17. 17.
    B. Leimkuhler, S. Reich, Math. Comp. 63, 598 (1994)CrossRefADSMathSciNetGoogle Scholar
  18. 18.
    B. Leimkuhler, Phys. Rev. E 81, 026703 (2010)CrossRefADSGoogle Scholar
  19. 19.
    B. Leimkuhler, E. Noorizadeh, O. Penrose, J. Stat. Phys. 143, 921 (2011)CrossRefMATHADSMathSciNetGoogle Scholar
  20. 20.
    B. Leimkuhler, E. Noorizadeh, F. Theil, J. Stat. Phys. 135, 261 (2009)CrossRefMATHADSMathSciNetGoogle Scholar
  21. 21.
    T. Lelièvre, M. Rousset, G. Stoltz (preprint) (2010)Google Scholar
  22. 22.
    A. Samoletov, M.A.J. Chaplain, C.P. Dettmann, J. Stat. Phys. 128, 1321 (2007)CrossRefMATHADSMathSciNetGoogle Scholar
  23. 23.
    J.A. Izaguirre, D.P. Catarello, J.M. Wozniak, R.D. Skeel, J. Chem. Phys. 114, 2090 (2001)CrossRefADSGoogle Scholar
  24. 24.
    P. Minary, G.J. Martyna, M.E. Tuckerman, Phys. Rev. Lett. 93, 150201 (2004)CrossRefADSGoogle Scholar
  25. 25.
    S. Reich, Physica D. 89, 28 (1995)CrossRefMATHMathSciNetGoogle Scholar
  26. 26.
    C. Hartmann, Constraints in Molecular Simulation 2010, Zaragosa, slides, Scholar
  27. 27.
    S. Melchionna, J. Chem. Phys. 127, 044108 (2007)CrossRefADSGoogle Scholar

Copyright information

© EDP Sciences and Springer 2011

Authors and Affiliations

  1. 1.Centrum Wiskunde & Informatica (CWI)AmsterdamThe Netherlands
  2. 2.School of Mathematics and Maxwell Institute for Mathematical SciencesThe University of EdinburghEdinburghUK

Personalised recommendations