The European Physical Journal Special Topics

, Volume 200, Issue 1, pp 5–54 | Cite as

The canonical equilibrium of constrained molecular models

  • P. Echenique
  • C. N. Cavasotto
  • P. García-Risueño


In order to increase the efficiency of the computer simulation of biological molecules, it is very common to impose holonomic constraints on the fastest degrees of freedom; normally bond lengths, but also possibly bond angles. Since the maximum time step required for the stability of the dynamics is proportional to the shortest period associated with the motions of the system, constraining the fastest vibrations allows to increase it and, assuming that the added numerical cost is not too high, also increase the overall efficiency of the simulation. However, as any other element that affects the physical model, the imposition of constraints must be assessed from the point of view of accuracy: both the dynamics and the equilibrium statistical mechanics are model-dependent, and they will be changed if constraints are used. In this review, we investigate the accuracy of constrained models at the level of the equilibrium statistical mechanics distributions produced by the different dynamics. We carefully derive the canonical equilibrium distributions of both the constrained and unconstrained dynamics, comparing the two of them by means of a “stiff” approximation to the latter. We do so both in the case of flexible and hard constraints, i.e., when the value of the constrained coordinates depends on the conformation and when it is a constant number. We obtain the different correcting terms associated with the kinetic energy mass-metric tensor determinants, but also with the details of the potential energy in the vicinity of the constrained subspace (encoded in its first and second derivatives). This allows us to directly compare, at the conformational level, how the imposition of constraints changes the thermal equilibrium of molecular systems with respect to the unconstrained case. We also provide an extensive review of the relevant literature, and we show that all models previously reported can be considered special cases of the most general treatments presented in this work. Finally, we numerically analyze a simple methanol molecule in order to illustrate the theoretical concepts in a practical case.


Potential Energy Probability Density Function Bond Angle Dihedral Angle European Physical Journal Special Topic 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    X. Andrade, A. Castro, D. Zueco, J.L. Alonso, P. Echenique, F. Falceto, A. Rubio, J. Chem. Theory Comput. 5, 728 (2009)CrossRefGoogle Scholar
  2. 2.
    D.C. Rapaport, The art of molecular dynamics simulation, 2nd edn. (Cambridge University Press, 2004)Google Scholar
  3. 3.
    M.P. Allen, D.J. Tildesley, Computer simulation of liquids (Clarendon Press, Oxford, 2005)Google Scholar
  4. 4.
    T. Hundertmark, S. Reich, Eur. Phys. J. Special Topics 200, 259 (2011)CrossRefADSGoogle Scholar
  5. 5.
    D. Frenkel, B. Smit, Understanding molecular simulations: From algorithms to applications, 2nd edn. (Academic Press, Orlando FL, 2002)Google Scholar
  6. 6.
    P. Echenique, Contemp. Phys. 48, 81 (2007)ADSCrossRefGoogle Scholar
  7. 7.
    D.L. Ensign, P.M. Kasson, V.S. Pande, J. Mol. Biol. 374, 806 (2007)CrossRefGoogle Scholar
  8. 8.
    P.L. Freddolino, K. Schulten, Biophys. J. 97, 2338 (2009)ADSCrossRefGoogle Scholar
  9. 9.
    D.E. Shaw, R.O. Dror, J.K. Salmon, J.P. Grossmann, K.M. Mackenzie, J.A. Bank, C. Young, M.M. Deneroff, B. Batson, K.J. Bowers, et al., Millisecond-scale molecular dynamics simulations on Anton, in Proceedings of the ACM/IEEE Conference on Supercomputing (SC09) (Portland, Oregon, 2009), p. 14Google Scholar
  10. 10.
    P. Echenique, J.L. Alonso, J. Comput. Chem. 29, 1408 (2008)CrossRefGoogle Scholar
  11. 11.
    J.L. Klepeis, K. Lindorff-Larsen, R.O. Dror, D.E. Shaw, Curr. Opin. Struct. Biol. 19, 1 (2009)CrossRefGoogle Scholar
  12. 12.
    D. Marx, J. Hutter, Ab initio molecular dynamics: Theory and implementation, in Modern Methods and Algorithms of Quantum Chemistry, edited byJ. Grotendorst (John von Neumann Institute for Computing, Jülich, 2000), Vol. 3, p. 329Google Scholar
  13. 13.
    A.M.N. Niklasson, C.J. Tymczak, M. Challacombe, Phys. Rev. Lett. 97, 123001 (2006)ADSCrossRefGoogle Scholar
  14. 14.
    J.L. Alonso, X. Andrade, P. Echenique, F. Falceto, D. Prada-Gracia, A. Rubio, Phys. Rev. Lett. 101, 096403 (2008)ADSCrossRefGoogle Scholar
  15. 15.
    V.M. Anisimov, V.L. Bugaenko, C.N. Cavasotto, Chem. Phys. Chem. 10, 3194 (2009)CrossRefGoogle Scholar
  16. 16.
    D.A. Pearlman, D.A. Case, J.W. Caldwell, W.R. Ross, T.E. Cheatham III, S. DeBolt, D. Ferguson, G. Seibel, P. Kollman, Comp. Phys. Commun. 91, 1 (1995)zbMATHADSCrossRefGoogle Scholar
  17. 17.
    W.L. Jorgensen, D.S. Maxwell, J. Tirado-Rives, J. Am. Chem. Soc. 118, 11225 (1996)CrossRefGoogle Scholar
  18. 18.
    W.L. Jorgensen, J. Tirado-Rives, J. Am. Chem. Soc. 110, 1657 (1988)CrossRefGoogle Scholar
  19. 19.
    J.W. Ponder, D.A. Case, Adv. Prot. Chem. 66, 27 (2003)CrossRefGoogle Scholar
  20. 20.
    D.A. Case, T.A. Darden, T.E. Cheatham III, C.L. Simmerling, J. Wang, R.E. Duke, R. Luo, M. Crowley, R.C. Walker, W. Zhang, et al., Amber 10, University of California, San Francisco (2008)Google Scholar
  21. 21.
    B.R. Brooks, C.L. Brooks III, A.D. MacKerell, L. Nilsson, R.J. Petrella, B. Roux, Y. Won, G. Archontis, C. Bartels, S. Boresch, et al., J. Comput. Chem. 30, 1545 (2009)CrossRefGoogle Scholar
  22. 22.
    F. Jensen, Introduction to Computational Chemistry (John Wiley & Sons, Chichester, 1998)Google Scholar
  23. 23.
    P. Echenique, J.L. Alonso, Mol. Phys. 105, 3057 (2007)ADSCrossRefGoogle Scholar
  24. 24.
    A. Emperador, O. Carrillo, M. Rueda, M. Orozco, Biophys. J. 95, 2127 (2008)ADSCrossRefGoogle Scholar
  25. 25.
    W. Han, C.K. Wan, Y.D. Wu, J. Chem. Theory Comput. 4, 1891 (2008)CrossRefGoogle Scholar
  26. 26.
    C. Czaplewski, S. Kalinowski, A. Liwo, H.A. Scheraga, J. Chem. Theory Comput. 5, 627 (2009)CrossRefGoogle Scholar
  27. 27.
    A. Liwo, S. Oldziej, C. Czaplewski, D.S. Kleinerman, P. Blood, H.A. Scheraga, J. Chem. Theory Comput. p. Articles ASAP (2010)Google Scholar
  28. 28.
    J.A. de la Torre, G. Ciccotti, P. Español, M. Ferrario, Eur. Phys. J. Special Topics 200, 107 (2011)CrossRefADSGoogle Scholar
  29. 29.
    R. Car, M. Parrinello, Phys. Rev. Lett. 55, 2471 (1985)ADSCrossRefGoogle Scholar
  30. 30.
    J. Hutter, A. Curioni, Chem. Phys. Chem. 6, 1788 (2005)CrossRefGoogle Scholar
  31. 31.
    E.A. Carter, G. Ciccotti, J.T. Hynes, R. Kapral, Chem. Phys. Lett. 5, 472 (1989)ADSCrossRefGoogle Scholar
  32. 32.
    C. Hartmann, G. Ciccotti, Eur. Phys. J. Special Topics, 200, 73 (2011)Google Scholar
  33. 33.
    J. Schlitter, Eur. Phys. J. Special Topics 200, 91 (2011)CrossRefADSGoogle Scholar
  34. 34.
    C. Levinthal, How to fold graciously, in Mossbauer Spectroscopy in Biological Systems, edited by J.T.P. DeBrunner, E. Munck (University of Illinois Press, Allerton House, Monticello, Illinois, 1969), p. 22Google Scholar
  35. 35.
    K.A. Dill, H.S. Chan, Nat. Struct. Biol. 4, 10 (1997)CrossRefGoogle Scholar
  36. 36.
    K.A. Dill, Prot. Sci. 8, 1166 (1999)CrossRefGoogle Scholar
  37. 37.
    T. Schlick, E. Barth, M. Mandziuk, Annu. Rev. Biophys. Biomol. Struct. 26, 181 (1997)CrossRefGoogle Scholar
  38. 38.
    M. Karplus, J.A. McCammon, Nat. Struct. Biol. 9, 646 (2002)CrossRefGoogle Scholar
  39. 39.
    V. Daggett, A. Fersht, Nat. Rev. Mol. Cell Biol. 4, 497 (2003)CrossRefGoogle Scholar
  40. 40.
    M.M. Chawla, SIAM J. Numer. Anal. 22, 127 (1985)zbMATHADSMathSciNetCrossRefGoogle Scholar
  41. 41.
    F.A. Bornemann, C. Schütte, Tech. rep., Konrad-Zuse-Zentrum für Informationstechnik Berlin (1995)Google Scholar
  42. 42.
    B.J. Leimkuhler, S. Reich, R.D. Skeel, in Mathematical approaches to biomolecular structure and dynamics, edited by J.P. Mesirov, K. Schulten (Springer, 1996)Google Scholar
  43. 43.
    K.A. Feenstra, B. Hess, H.J.C. Berendsen, J. Comput. Chem. 20, 786 (1999)CrossRefGoogle Scholar
  44. 44.
    M. Fixman, Proc. Natl. Acad. Sci. USA 71, 3050 (1974)ADSCrossRefGoogle Scholar
  45. 45.
    H. Goldstein, C. Poole, J. Safko, Classical Mechanics, 3rd edn. (Addison-Wesley, 2002)Google Scholar
  46. 46.
    P. Echenique, J.L. Alonso, J. Comput. Chem. 27, 1076 (2006)CrossRefGoogle Scholar
  47. 47.
    B.A. Dubrovin, A.T. Fomenko, S.P. Novikov, Modern Geometry – Methods and Applications (Springer, Berlin, 1992)Google Scholar
  48. 48.
    E.W. Weisstein, Ordinary differential equations, from MathWorld – A Wolfram Web Resource. (last accessed on 03/17/09)Google Scholar
  49. 49.
    J. Zhou, S. Reich, B.R. Brooks, J. Chem. Phys. 112, 7919 (2000)ADSCrossRefGoogle Scholar
  50. 50.
    B. Hess, H. Saint-Martin, H.J.C. Berendsen, J. Chem. Phys. 116, 9602 (2002)ADSCrossRefGoogle Scholar
  51. 51.
    P. Echenique, I. Calvo, J.L. Alonso, J. Comput. Chem. 27, 1748 (2006)CrossRefGoogle Scholar
  52. 52.
    R. Balescu, Equilibrium and nonequilibrium statistical mechanics (John Wiley & Sons, New York, 1975)Google Scholar
  53. 53.
    K. Huang, Statistical Mechanics (John Wiley & Sons, New York, 1987)Google Scholar
  54. 54.
    K.B. Petersen, M.S. Pedersen, The matrix cookbook, Downoladed from (2010)Google Scholar
  55. 55.
    N. Gō, H.A. Scheraga, J. Chem. Phys. 51, 4751 (1969)ADSCrossRefGoogle Scholar
  56. 56.
    P. Echenique, I. Calvo, J. Comput. Chem. 27, 1733 (2006)CrossRefGoogle Scholar
  57. 57.
    P. Eastman, V.S. Pande, J. Chem. Theory Comput. 6, 434 (2010)CrossRefGoogle Scholar
  58. 58.
    B. Hess, J. Chem. Theory Comput. 4, 116 (2008)CrossRefGoogle Scholar
  59. 59.
    A.K. Mazur, R.A. Abagyan, J. Biomol. Struct. Dyn. 6, 815 (1989)Google Scholar
  60. 60.
    A.M. Mathiowetz, A. Jain, N. Karasawa, W.A. Goddard III, PROTEINS: Struct. Funct. Gen. 20, 227 (1994)CrossRefGoogle Scholar
  61. 61.
    K. Hinsen, G.R. Kneller, Phys. Rev. E 52, 6868 (1995)ADSCrossRefGoogle Scholar
  62. 62.
    A.K. Mazur, J. Comput. Chem. 18, 1354 (1997)CrossRefGoogle Scholar
  63. 63.
    J. Chen, W. Im, C.L. Brooks III, J. Comput. Chem. 26, 1565 (2005)CrossRefGoogle Scholar
  64. 64.
    H. Saint-Martin, B. Hess, H.J.C. Berendsen, J. Chem. Phys. 120, 11133 (2004)ADSCrossRefGoogle Scholar
  65. 65.
    M. Christen, W.F. van Gunsteren, J. Chem. Phys. 122, 144106 (2005)ADSCrossRefGoogle Scholar
  66. 66.
    M. Christen, C.D. Christ, W.F. van Gunsteren, Chem. Phys. Chem. 8, 1557 (2007)CrossRefGoogle Scholar
  67. 67.
    C.J. Cotter, S. Reich, BIT Num. Math. 44, 439 (2004)zbMATHMathSciNetCrossRefGoogle Scholar
  68. 68.
    U. Stocker, D. Juchli, W.F. van Gunsteren, Mol. Simul. 29, 123 (2003)zbMATHCrossRefGoogle Scholar
  69. 69.
    S. Reich, Phys. Rev. E 53, 53 (1996)CrossRefGoogle Scholar
  70. 70.
    S. Reich, Num. Alg. 19, 213 (1998)zbMATHADSCrossRefGoogle Scholar
  71. 71.
    N. Gō, H.A. Scheraga, Macromolecules 9, 535 (1976)ADSCrossRefGoogle Scholar
  72. 72.
    M.R. Pear, J.H. Weiner, J. Chem. Phys. 71, 212 (1979)ADSCrossRefGoogle Scholar
  73. 73.
    E. Helfand, J. Chem. Phys. 71, 5000 (1979)ADSCrossRefGoogle Scholar
  74. 74.
    P. Pechukas, J. Chem. Phys. 72, 6320 (1980)ADSMathSciNetCrossRefGoogle Scholar
  75. 75.
    H.J.C. Berendsen, W.F. Van Gunsteren, in The Physics of Superionic Conductors and Electrode Materials, edited by J.W. Perram (Plenum Press, 1983), Vol. NATO ASI Series B92, p. 221Google Scholar
  76. 76.
    D. Perchak, J. Skolnick, R. Yaris, Macromolecules 18, 519 (1985)ADSCrossRefGoogle Scholar
  77. 77.
    N.G. Almarza, E. Enciso, J. Alonso, F.J. Bermejo, M. Álvarez, Mol. Phys. 70, 485 (1990)ADSCrossRefGoogle Scholar
  78. 78.
    D. Dubbeldam, G.A.E. Oxford, R. Krishna, L.J. Broadbelt, R.Q.Snurr, J. Chem. Phys.133, 034114 (2010)ADSCrossRefGoogle Scholar
  79. 79.
    N.G. Van Kampen, J.J. Lodder, Am. J. Phys. 52, 419 (1984)ADSCrossRefGoogle Scholar
  80. 80.
    J.M. Rallison, J. Fluid Mech. 93, 251 (1979)zbMATHADSMathSciNetCrossRefGoogle Scholar
  81. 81.
    E.J. Hinch, J. Fluid Mech. 271, 219 (1994)zbMATHADSMathSciNetCrossRefGoogle Scholar
  82. 82.
    D.C. Morse, Adv. Chem. Phys. 128, 65 (2004)CrossRefGoogle Scholar
  83. 83.
    G. Gallavotti, The Elements of Mechanics (Ipparco Editore, 2007), available at Scholar
  84. 84.
    D. Chandler, B.J. Berne, J. Chem. Phys. 71, 5386 (1979)ADSMathSciNetCrossRefGoogle Scholar
  85. 85.
    M. Karplus, J.N. Kushick, Macromolecules 14, 325 (1981)ADSCrossRefGoogle Scholar
  86. 86.
    W.F. Van Gunsteren, M. Karplus, Macromolecules 15, 1528 (1982)ADSCrossRefGoogle Scholar
  87. 87.
    I.G. Tironi, R.M. Brunne, W.F. van Gunsteren, Chem. Phys. Lett. 250, 19 (1995)CrossRefGoogle Scholar
  88. 88.
    A.K. Mazur, in Computational Biochemistry and Biophysics, edited by O.M. Becker, A.D. MacKerell Jr., B. Roux, M. Watanabe (Marcel Dekker Inc., 2001)Google Scholar
  89. 89.
    R.F. Álvarez-Estrada, Macromol. Theory Simul. 7, 457 (1998)CrossRefGoogle Scholar
  90. 90.
    R. Froese, I. Herbst, Commun. Math. Phys. 220, 489 (2001)zbMATHADSMathSciNetCrossRefGoogle Scholar
  91. 91.
    R.F. Álvarez-Estrada, G.F. Calvo, Eur. Phys. J. Special Topics 200, 225 (2011)CrossRefADSGoogle Scholar
  92. 92.
    N.G. van Kampen, Phys. Rev. 124, 69 (1985)MathSciNetGoogle Scholar
  93. 93.
    F.A. Bornemann, C. Schütte, Physica D 102, 57 (1997)zbMATHADSMathSciNetCrossRefGoogle Scholar
  94. 94.
    R.D. Skeel, S. Reich, Eur. Phys. J. Special Topics 200, 55 (2011)CrossRefADSGoogle Scholar
  95. 95.
    J. Bajars, J. Frank, B. Leimkuhler, Eur. Phys. J. Special Topics 200, 131 (2011)CrossRefADSGoogle Scholar
  96. 96.
    J. Walter, J. Maddocks, C. Hartmann, Eur. Phys. J. Special Topics 200, 153 (2011)CrossRefADSGoogle Scholar
  97. 97.
    L. Schäfer, M. Cao, M.J. Meadows, Biopolymers 35, 603 (1995)CrossRefGoogle Scholar
  98. 98.
    L. Schäfer, M. Cao, M. Ramek, B.J. Teppen, S.Q. Newton, K. Siam, J. Mol. Struct. 413–414, 175 (1997)CrossRefGoogle Scholar
  99. 99.
    C.H. Yu, M.A. Norman, L. Schäfer, M. Ramek, A. Peeters, C. van Alsenoy, J. Mol. Struct. 567–568, 361 (2001)CrossRefGoogle Scholar
  100. 100.
    A.T. Hagler, P.S. Stern, R. Sharon, J.M. Becker, F. Naider, J. Am. Chem. Soc. 101, 6842 (1978)CrossRefGoogle Scholar
  101. 101.
    G. Ciccotti, J.P. Ryckaert, Comput. Phys. Rep. 4, 345 (1986)ADSCrossRefGoogle Scholar
  102. 102.
    P. Echenique, C.N. Cavasotto, M. De Marco, P. García-Risueño, J.L. Alonso, PLoS one 6, e24563 (2011)ADSCrossRefGoogle Scholar
  103. 103.
    J.P. Ryckaert, G. Ciccotti, H.J.C. Berendsen, J. Comput. Phys. 23, 327 (1977)ADSCrossRefGoogle Scholar
  104. 104.
    A. Szabo, N.S. Ostlund, Modern Quantum Chemistry: Introduced to Advanced Electronic Structure Theory (Dover Publications, New York, 1996)Google Scholar
  105. 105.
    J.V. José, E.J. Saletan, Classical dynamics: a contemporary approach (Cambridge University Press, 1998)Google Scholar
  106. 106.
    M. Ferrario, J.P. Ryckaert, Mol. Phys. 54, 587 (1985)ADSCrossRefGoogle Scholar
  107. 107.
    B. Hess (private communication) (2011)Google Scholar
  108. 108.
    T.Q. Yu, M. Tuckerman, Eur. Phys. J. Special Topics 200, 183 (2011)CrossRefADSGoogle Scholar
  109. 109.
    T. Noguti, N. Gō, J. Phys. Soc. Japan 52, 3685 (1983)ADSCrossRefGoogle Scholar
  110. 110.
    H. Abe, W. Braun, N. Gō, Comp. Chem. 8, 239 (1984)CrossRefGoogle Scholar
  111. 111.
    M. Pasquali, D.C. Morse, J. Chem. Phys. 116, 1834 (2002)ADSCrossRefGoogle Scholar
  112. 112.
    A. Patriciu, G.S. Chirikjian, R.V. Pappu, J. Chem. Phys. 121, 12708 (2004)ADSCrossRefGoogle Scholar
  113. 113.
    P. García-Risue no, P. Echenique, J.L. Alonso, J. Comput. Chem. 32, 3039 (2011)CrossRefGoogle Scholar
  114. 114.
    R. Elber, B. Hess, Eur. Phys. J. Special Topics 200, 211 (2011)CrossRefADSGoogle Scholar
  115. 115.
    S. Reich, Physica D 89, 28 (1995)zbMATHMathSciNetCrossRefGoogle Scholar
  116. 116.
    V.I. Arnold, Mathematical Methods of Classical Mechanics, Graduate Texts in Mathematics, 2nd edn. (Springer, New York, 1989)Google Scholar
  117. 117.
    H. Rubin, P. Ungar, Commun. Pure Appl. Math. X, 65 (1957)MathSciNetCrossRefGoogle Scholar
  118. 118.
    G.M. Torrie, J.P. Valleau, J. Comput. Phys. 23, 187 (1977)ADSCrossRefGoogle Scholar
  119. 119.
    G. Ciccotti, R. Kapral, E. Vanden-Eijnden, Chem. Phys. Chem. 6, 1809 (2005)CrossRefGoogle Scholar
  120. 120.
    W.K. Den Otter, W.J. Briels, Mol. Phys. 98, 773 (2000)ADSCrossRefGoogle Scholar
  121. 121.
    W.K. Den Otter, W.J. Briels, J. Chem. Phys. 109, 4139 (1998)ADSCrossRefGoogle Scholar
  122. 122.
    E.A.J.F. Peters, Ph.D. thesis, Technische Universiteit Delft, 2000Google Scholar
  123. 123.
    I. Andricioaei, M. Karplus, J. Chem. Phys. 115, 6289 (2001)ADSCrossRefGoogle Scholar
  124. 124.
    W.F. van Gunsteren, Mol. Phys. 40, 1015 (1980)ADSCrossRefGoogle Scholar
  125. 125.
    W.F. Van Gunsteren, in Computer Simulations of Biomolecular Systems, edited by W.F. Van Gunsteren, P.K. Weiner (Escom science publishers, Netherlands, 1989), p. 27Google Scholar
  126. 126.
    J. Schlitter, M. Klän, J. Chem. Phys. 118, 2057 (2003)ADSCrossRefGoogle Scholar
  127. 127.
    C. Hartmann, C. Schütte, Physica D 228, 59 (2007)zbMATHADSMathSciNetCrossRefGoogle Scholar
  128. 128.
    D.W. Li, R. Brüschweiler, Phys. Rev. Lett. 102, 118108 (2009)ADSCrossRefGoogle Scholar
  129. 129.
    J. Schlitter, M. Klän, Mol. Phys. 101, 3439 (2003)ADSCrossRefGoogle Scholar
  130. 130.
    S. Toxvaerd, O.J. Heilmann, T. Ingebrigtsen, T.B. Schrøder, J.C. Dyre, J. Chem. Phys. 131, 064102 (2009)ADSCrossRefGoogle Scholar
  131. 131.
    W.F. van Gunsteren, H.J.C. Berendsen, Mol. Phys. 34, 1311 (1977)ADSCrossRefGoogle Scholar
  132. 132.
    W.D. Cornell, P. Cieplak, C.I. Bayly, I.R. Gould, J. Merz, K. M., D.M. Ferguson, D.C. Spellmeyer, T. Fox, J.W. Caldwell, P.A. Kollman, J. Am. Chem. Soc. 117, 5179 (1995)CrossRefGoogle Scholar
  133. 133.
    P. Kollman, R. Dixon, W. Cornell, T. Fox, C. Chipot, A. Pohorill, in Computer Simulations of Biomolecular Systems, edited by W.F. Van Gunsteren, P.K. Weiner, A.J. Wilkinson (Kluwer Academic Publishing, Dordrecht, 1997) Vol. 3, p. 83Google Scholar
  134. 134.
    M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, J.A. MontgomeryJr., , T. Vreven, K.N. Kudin, J.C. Burant, et al., Gaussian 03, Revision E.01 (2007), Gaussian, Inc., Wallingford, CTGoogle Scholar
  135. 135.
    M.E., Tuckerman, Y. Liu,, G. Ciccotti, G.J. Martyna, J. Chem. Phys. 115, 1678 (2001)ADSCrossRefGoogle Scholar
  136. 136.
    M.R. Flannery, Am. J. Phys. 73, 265 (2005)zbMATHADSMathSciNetCrossRefGoogle Scholar
  137. 137.
    A.J. van der Schaft, B.M. Maschke, Rep. Math. Phys. 34, 225 (1994)zbMATHADSMathSciNetCrossRefGoogle Scholar
  138. 138.
    W.S. Koon, J.E. Marsden Rep. Math. Phys. 40, 21 (1997)zbMATHADSMathSciNetCrossRefGoogle Scholar
  139. 139.
    M. Molina-Becerra, E. Freire, J.G. Vioque, Equations of motion of nonholonomic Hamiltonian systems, preprint obtained from (2010)Google Scholar
  140. 140.
    S. Kirkpatrick, C.D. Gelatt, M.P. Vecchi, Science 220, 671 (1983)zbMATHADSMathSciNetCrossRefGoogle Scholar
  141. 141.
    T. Weise, Global optimization algorithms –theory and application–, retrieved from (2009)Google Scholar

Copyright information

© EDP Sciences and Springer 2011

Authors and Affiliations

  • P. Echenique
    • 1
    • 2
    • 3
    • 4
  • C. N. Cavasotto
    • 5
  • P. García-Risueño
    • 1
    • 2
    • 3
  1. 1.Instituto de Química Física “Rocasolano”, CSICMadridSpain
  2. 2.Instituto de Biocomputación y Física de Sistemas Complejos (BIFI)Universidad de Zaragoza, Mariano Esquillor s/nZaragozaSpain
  3. 3.Departamento de Física TeóricaUniversidad de ZaragozaZaragozaSpain
  4. 4.Unidad Asociada IQFR-BIFIZaragozaSpain
  5. 5.School of Biomedical InformaticsUniversity of Texas Health Science Center at HoustonHoustonUSA

Personalised recommendations