Advertisement

The European Physical Journal Special Topics

, Volume 199, Issue 1, pp 5–76 | Cite as

Practitioner’s guide to laser pulse propagation models and simulation

Numerical implementation and practical usage of modern pulse propagation models
  • A. CouaironEmail author
  • E. Brambilla
  • T. Corti
  • D. Majus
  • O. de J. Ramírez-Góngora
  • M. KolesikEmail author
Review

Abstract

The purpose of this article is to provide practical introduction into numerical modeling of ultrashort optical pulses in extreme nonlinear regimes. The theoretic background section covers derivation of modern pulse propagation models starting from Maxwell’s equations, and includes both envelope-based models and carrier-resolving propagation equations. We then continue with a detailed description of implementation in software of Nonlinear Envelope Equations as an example of a mixed approach which combines finite-difference and spectral techniques. Fully spectral numerical solution methods for the Unidirectional Pulse Propagation Equation are discussed next. The modeling part of this guide concludes with a brief introduction into efficient implementations of nonlinear medium responses. Finally, we include several worked-out simulation examples. These are mini-projects designed to highlight numerical and modeling issues, and to teach numerical-experiment practices. They are also meant to illustrate, first and foremost for a non-specialist, how tools discussed in this guide can be applied in practical numerical modeling.

Keywords

European Physical Journal Special Topic Probe Beam Pump Pulse Nonlinear Polarization Transverse Wave Number 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    F. Krausz, M. Ivanov, Rev. Mod. Phys. 81, 163 (2009)ADSCrossRefGoogle Scholar
  2. 2.
    E. Esarey, Rev. Mod. Phys. 81, 1229 (2009)ADSCrossRefGoogle Scholar
  3. 3.
    A. Couairon, A. Mysyrowicz, Phys. Rep. 441, 47 (2007)ADSCrossRefGoogle Scholar
  4. 4.
    M.B. Gaarde, J.L. Tate, K.J. Schafer, J. Phys. B.: At. Mol. Opt. Phys. 41, 132001 (2008)ADSCrossRefGoogle Scholar
  5. 5.
    M. Kolesik, J.V. Moloney, Phys. Rev. E 70, 036604 (2004)ADSCrossRefGoogle Scholar
  6. 6.
    D. Faccio, A. Couairon, P. Di Trapani, Conical Waves, Filaments and Nonlinear Filamentation Optics (Aracne, Roma, 2007)Google Scholar
  7. 7.
    P. Maine, D. Strickland, P. Bado, M. Pessot, G. Mourou, IEEE J. Quant. Electron. 24, 398 (1988)ADSCrossRefGoogle Scholar
  8. 8.
    A. Braun, et al., Opt. Lett. 20, 73 (1995)ADSCrossRefGoogle Scholar
  9. 9.
    http://www.stella-school.eu/Google Scholar
  10. 10.
    M. Kolesik, J.V. Moloney, M. Mlejnek, Phys. Rev. Lett. 89, 283902 (2002)ADSCrossRefGoogle Scholar
  11. 11.
    A.V. Husakou, J. Herrmann, Phys. Rev. Lett. 87, 203901 (2001)ADSCrossRefGoogle Scholar
  12. 12.
    H.S. Chakraborty, M.B. Gaarde, A. Couairon, Opt. Lett. 31, 3662 (2006)ADSCrossRefGoogle Scholar
  13. 13.
    M.B. Gaarde, A. Couairon, Phys. Rev. Lett. 103, 043901 (2009)ADSCrossRefGoogle Scholar
  14. 14.
    M. Geissler, G. Tempea, A. Scrinzi, M. Schnürer, F. Krausz, T. Brabec, Phys. Rev. Lett. 83, 2930 (1999)ADSCrossRefGoogle Scholar
  15. 15.
    P. Kinsler, G.H.C. New, Phys. Rev. A 67, 023813 (2003)ADSCrossRefGoogle Scholar
  16. 16.
    M.A. Porras, Phys. Rev. A 60, 5069 (1999)ADSCrossRefGoogle Scholar
  17. 17.
    T. Brabec, F. Krausz, Phys. Rev. Lett. 78, 3282 (1997)ADSCrossRefGoogle Scholar
  18. 18.
    J.V. Moloney, A.C. Newell, Nonlinear Optics (Westview Press, Boulder, Colorado, 2004)Google Scholar
  19. 19.
    J.D. Jackson, Classical Electrodynamics, 3rd edn. (Wiley, New York, 1998)Google Scholar
  20. 20.
    M.D. Feit, J.A. Fleck, Jr., J. Opt. Soc. Am. B 5, 633 (1988)ADSCrossRefGoogle Scholar
  21. 21.
    A. Lotti, D. Faccio, A. Couairon, M.B. Gaarde, P. Di Trapani, Phys. Rev. A 83, 053804 (2011)ADSCrossRefGoogle Scholar
  22. 22.
    A. Couairon, H.S. Chakraborty, M.B. Gaarde, Phys. Rev. A 77, 053814 (2008)ADSCrossRefGoogle Scholar
  23. 23.
    D.S. Steingrube, E. Schulz, T. Binhammer, M.B. Gaarde, A. Couairon, U. Morgner, M. Kovačev, New J. Phys. 13, 043022 (2011)ADSCrossRefGoogle Scholar
  24. 24.
    E. Schulz, D.S. Steingrube, T. Binhammer, M.B. Gaarde, A. Couairon, U. Morgner, M. Kovačev, Opt. Express 19, 19495 (2011)ADSCrossRefGoogle Scholar
  25. 25.
    http://refractiveindex.info/Google Scholar
  26. 26.
    G. Fibich, B. Ilan, Physica D 157, 112 (2001)zbMATHADSMathSciNetCrossRefGoogle Scholar
  27. 27.
    V.G. Dmitriev, G.G. Gurzadyan, D.N. Nikogosyan, Handbook of Nonlinear Optical Crystals, 3rd edn. edited by A.E. Siegman, Springer Series in Optical Sciences vol. 64, (Springer, Berlin, 1999)Google Scholar
  28. 28.
    Y. Silberberg, Opt. Lett. 15, 1282 (1990)ADSCrossRefGoogle Scholar
  29. 29.
    J.H. Marburger, Theory. Prog. Quant. Electr. 4, 35 (1975)ADSCrossRefGoogle Scholar
  30. 30.
    G.G. Luther, J.V. Moloney, A.C. Newell, E.M. Wright, Opt. Lett. 19, 862 (1994)ADSCrossRefGoogle Scholar
  31. 31.
    A. Couairon, Phys. Rev. A 68, 015801 (2003)ADSCrossRefGoogle Scholar
  32. 32.
    N. Aközbek, A. Iwasaki, A. Becker, M. Scalora, S.L. Chin, C.M. Bowden, Phys. Rev. Lett. 89, 143901 (2002)ADSCrossRefGoogle Scholar
  33. 33.
    Y. Liu, M. Durand, A. Houard, B. Forestier, A. Couairon, A. Mysyrowicz, Opt. Commun. 284, 4706 (2011)ADSCrossRefGoogle Scholar
  34. 34.
    A. Couairon, E. Gaižauskas, D. Faccio, A. Dubietis, P. Di Trapani, Phys. Rev. E 73, 016608 (2006)ADSCrossRefGoogle Scholar
  35. 35.
    S.C. Rae, K. Burnett, Phys. Rev. A 46, 2077 (1992)ADSCrossRefGoogle Scholar
  36. 36.
    E. Yablonovitch, N. Bloembergen, Phys. Rev. Lett. 29, 907 (1972)ADSCrossRefGoogle Scholar
  37. 37.
    D. Faccio, et al., Opt. Lett. 32, 184 (2007)ADSCrossRefGoogle Scholar
  38. 38.
    D. Faccio, et al., Opt. Express 15, 13077 (2007)ADSCrossRefGoogle Scholar
  39. 39.
    A.-K. Kassam, L.N. Trefethen, SIAM J. Sci. Comput. 26, 1214 (2005)zbMATHMathSciNetCrossRefGoogle Scholar
  40. 40.
    W.F. Ames, Numerical methods for Partial Differential Equations, 2nd edn. (Academic Press, New York, 1977)Google Scholar
  41. 41.
    W.H. Press, S.A. Teukolsky, W.T. Vetterling, B.P. Flannery, Numerical Recipes (Cambridge University Press, Cambridge 1992)Google Scholar
  42. 42.
    J. Crank, P. Nicolson, Proc. Camb. Phil. Soc. 43, 50 (1947)zbMATHADSMathSciNetCrossRefGoogle Scholar
  43. 43.
    F. Collino, J. Comput. Phys. 113, 164180 (1997)Google Scholar
  44. 44.
    J. Strikwerda, Finite Difference Schemes and PDEs, 2nd edn. (SIAM, 2004)Google Scholar
  45. 45.
    S.M. Cox, P.C. Matthews, J. Comp. Phys. 176, 430 (2002)zbMATHADSMathSciNetCrossRefGoogle Scholar
  46. 46.
    D. Faccio, et al., Phys. Rev. A 78, 033826 (2008)ADSCrossRefGoogle Scholar
  47. 47.
    M.M.T. Loy, Y.R. Shen, Phys. Rev. Lett. 22, 994 (1969)ADSCrossRefGoogle Scholar
  48. 48.
    V.N. Lugovoi, A.M. Prokhorov, JETP Lett. 7, 117 (1968)ADSGoogle Scholar
  49. 49.
    V.N. Lugovoi, A.M. Prokhorov, Sov. Phys. Uspekhi 16, 658 (1974)ADSCrossRefGoogle Scholar
  50. 50.
    Y.R. Shen, Principles of Nonlinear Optics (Wiley, New York, 1984)Google Scholar
  51. 51.
    S. Minardi, A. Gopal, M. Tatarakis, A. Couairon, G. Tamosauskas, R. Piskarskas, A. Dubietis, P. Di Trapani, Opt. Lett. 33, 86 (2008)ADSCrossRefGoogle Scholar
  52. 52.
    S. Minardi, A. Gopal, A. Couairon, G. Tamosauskas, R. Piskarskas, A. Dubietis, P. Di Trapani, Opt. Lett. 34, 3020 (2009)CrossRefGoogle Scholar
  53. 53.
    P. Whalen, J.V. Moloney, M. Kolesik, Opt. lett. 36, 2542 (2011)ADSCrossRefGoogle Scholar
  54. 54.
    A. Brodeur, C.Y. Chien, F.A. Ilkov, S.L. Chin, O.G. Kosareva, V.P. Kandidov, Opt. Lett. 22, 304 (1997)ADSCrossRefGoogle Scholar
  55. 55.
    A. Couairon, Eur. Phys. J. D 27, 159 (2003)ADSCrossRefGoogle Scholar
  56. 56.
    P. Polynkin, M. Kolesik, E.M. Wright, J.V. Moloney, Phys. Rev. Lett. 106, 153902 (2011)ADSCrossRefGoogle Scholar
  57. 57.
    D. Faccio, et al., J. Opt. Soc. Am. B 22, 862 (2005)ADSCrossRefGoogle Scholar
  58. 58.
    M. Kolesik, E.M. Wright, J.V. Moloney, Phys. Rev. Lett. 92, 253901 (2004)ADSCrossRefGoogle Scholar
  59. 59.
    D. Faccio, et al., Phys. Rev. E 72, 037601 (2005)ADSCrossRefGoogle Scholar
  60. 60.
    M. Kolesik, E.M. Wright, J.V. Moloney, Opt. Express 13, 10729 (2005)ADSCrossRefGoogle Scholar
  61. 61.
    M. Kolesik, G. Katona, J.V. Moloney, E.M. Wright, Phys. Rev. Lett. 91, 043905 (2003)ADSCrossRefGoogle Scholar
  62. 62.
    M. Kolesik, G. Katona, J.V. Moloney, E.M. Wright, Appl. Phys. B 77, 185 (2003)ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences and Springer 2011

Authors and Affiliations

  1. 1.Centre de Physique ThéoriqueCNRS, École PolytechniquePalaiseauFrance
  2. 2.Department of Physics and MathematicsUniversity of InsubriaComoItaly
  3. 3.Department of Quantum ElectronicsVilnius UniversityVilniusLithuania
  4. 4.Departamento de Ciencias Naturales y MatemáticasPontificia Universidad Javeriana-CaliCaliColombia
  5. 5.College of Optical SciencesTucsonUSA
  6. 6.Department of PhysicsConstantine the Philosopher UniversityNitraSlovakia

Personalised recommendations