Advertisement

Aerodynamic levitation and laser heating:

Applications at synchrotron and neutron sources
  • L. HennetEmail author
  • V. Cristiglio
  • J. Kozaily
  • I. Pozdnyakova
  • H. E. Fischer
  • A. Bytchkov
  • J. W. E. Drewitt
  • M. Leydier
  • D. Thiaudière
  • S. Gruner
  • S. Brassamin
  • D. Zanghi
  • G. J. Cuello
  • M. Koza
  • S. Magazù
  • G. N. Greaves
  • D. L. Price
Review

Abstract

Aerodynamic levitation is an effective way to suspend samples which can be heated with CO2 lasers. The advantages of this containerless technique are the simplicity and compactness of the device, making it possible to integrate it easily in different kinds of experiments. In addition, all types of materials can be used, including metals and oxides. The integration of aerodynamic levitation at synchrotron and neutron sources provides powerful tools to study the structure and dynamics of molten materials. We present here an overview of the existing techniques and of the developments made at the CEMHTI in Orléans, as well as a few examples of experimental results already obtained.

Keywords

European Physical Journal Special Topic Small Angle Neutron Scattering Pair Distribution Function Amorphous Metal European Synchrotron Radiation Facility 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    D.L. Price, High-temperature Levitated Materials (Cambridge University Press, 2010)Google Scholar
  2. 2.
    G. Jacobs, I. Egry, K. Maier, D. Platzek, J. Reske, R. Frahm, Rev. Sci. Instrum. 67, 3683 (1996)ADSCrossRefGoogle Scholar
  3. 3.
    P.F. Paradis, T. Ishikawa, J. Yu, S. Yoda, Rev. Sci. Instrum. 72, 2811 (2001)ADSCrossRefGoogle Scholar
  4. 4.
    E.H. Trinh, Rev. Sci. Instrum. 56, 2059 (1985)ADSCrossRefGoogle Scholar
  5. 5.
    L. Hennet, D. Thiaudière, M. Gailhanou, C. Landron, J.-P. Coutures, D.L. Price, Rev. Sci. Instrum. 73, 124 (2002)ADSCrossRefGoogle Scholar
  6. 6.
    L. Hennet, I. Pozdnyakova, A. Bytchkov, V. Cristiglio, P. Palleau, H. Fischer, G.J. Cuello, M. Johnson, P. Melin, D. Zanghi, S. Brassamin, J.-F. Brun, D.L. Price, M.-L. Saboungi, Rev. Sci. Instrum. 77, 053903 (2006)ADSCrossRefGoogle Scholar
  7. 7.
    S. Ansell, S. Krishnan, J.K.R. Weber, J.J. Felten, P.C. Nordine, M.A. Beno, D. Price, M.L. Saboungi, Phys. Rev. Lett. 78, 464 (1997)ADSCrossRefGoogle Scholar
  8. 8.
    S. Krishnan, J.J. Felten, J.E. Rix, J.K.R. Weber, P.C. Nordine, M.A. Beno, S Ansell, D.L. Price, Rev. Sci. Instrum. 68, 3512 (1997)ADSCrossRefGoogle Scholar
  9. 9.
    S. Krishnan, D.L. Price, J. Phys.: Condens. Matter 12, R145 (2000)ADSCrossRefGoogle Scholar
  10. 10.
    C. Notthoff, H. Franz, M. Hanfland, D.M. Herlach, D. Holland-MoritzW. Petry, RSI 71, 3791 (2000)Google Scholar
  11. 11.
    H. Kimura, M. Watanabe, K. Izumi, T. Hibiya, D. Holland-Moritz, T. Schenk, K.R. Bauchspiess, S. Schneider, I. Egry, K. Funakoshi, M. Hanfland, Appl. Phys. Lett. 78, 604 (2001)ADSCrossRefGoogle Scholar
  12. 12.
    K.F. Kelton, G.E. Lee, A.K. Gangopadhyay, R.W. Hyers, T.J. Rathz, J.R. Rogers, M.B. Robinson, D.S. Robinson, Phys. Rev. Lett. 90, 195504 (2003)ADSCrossRefGoogle Scholar
  13. 13.
    T. Masaki, T. Ishikawa, P.-F. Paradis, S. Yoda, J.T. Okada, Y. Watanabe, S. Nanao, A. Ishikukra, K. Higuchi, A. Mizuno, M. Watanabe, S. Kohara, Rev. Sci. Instrum. 78, 026102 (2007)ADSCrossRefGoogle Scholar
  14. 14.
    Y. Cerenius, A. Oskarsson, S. Santesson, S. Nilssonc, L. Klood, J. Appl. Cryst. 36, 163 (2003)CrossRefGoogle Scholar
  15. 15.
    J. Leiterer, F. Delissen, F. Emmerling, A.F. Thünemann, U. Panne, Anal. Bioanal. Chem. 391, 1221 (2008)CrossRefGoogle Scholar
  16. 16.
    J.K.R. Weber, C.A. Rey, J. Neuefeind, C.J. Benmore, Rev. Sci. Instrum. 80, 083904 (2009)ADSCrossRefGoogle Scholar
  17. 17.
    Q. Mei, C.J. Benmore, J.K.R. Weber, M. Wilding, J. Kim, J. Rix, J. Phys.: Condens. Matter 20, 245107 (2008)ADSCrossRefGoogle Scholar
  18. 18.
    S. Matsumura, M. Watanabe, A. Mizuno, S. Kohara, J. Am. Ceram. Soc. 90, 742 (2007)CrossRefGoogle Scholar
  19. 19.
    A. Bytchkov, L. Hennet, I. Pozdnyakova, J. Wright, G. Vaughan, S. Rossano, K. Madjer, D.L. Price, AIP Conf. Proc. 1234, 219 (2010)ADSCrossRefGoogle Scholar
  20. 20.
    J. Brillo, A. Bytchkov, I. Egry, L. Hennet, G. Mathiak, I. Pozdnyakova, D.L. Price, D. Thiaudière, D. Zanghi, J. Non-Cryst. Solids 352, 4008 (2006)ADSCrossRefGoogle Scholar
  21. 21.
    V. Cristiglio, Ph.D. thesis, University of Orléans (France) (2008)Google Scholar
  22. 22.
    L. Hennet, D. Thiaudière, C. Landron, J.-F. Bérar, M.-L. Saboungi, G. Matzen, D.L. Price, Nucl. Instr. Meth. Phys. Res. B 207, 447 (2003)ADSCrossRefGoogle Scholar
  23. 23.
    L. Hennet, D. Thiaudière, C. Landron, P. Melin, D.L. Price, J.-P. Coutures, J.-F. Bérar, M.-L. Saboungi, Appl. Phys. Lett. 83, 3305 (2003)ADSCrossRefGoogle Scholar
  24. 24.
    M. Watanabe, A. Mizuno, T. Akimoto, S. Kohara, Mater. Sci. Forum 638-642, 1677 (2010)CrossRefGoogle Scholar
  25. 25.
    J.K.R. Weber, C.J. Benmore, G. Jennings, M.C. Wilding, J.B. Parise, Nucl. Instr. Meth. A (2010), doi:10.1016/j.nima.2010.09.125Google Scholar
  26. 26.
    T.H. Kim, G. Lee, B. Sieve, A.K. Gangopadhyay, R. Hyers, T.J. Rathz, J.R. Rogers, D.S. Robinson, K.F. Kelton, A.I. Goldman, Phys. Rev. Lett. 95, 085501 (2005)ADSCrossRefGoogle Scholar
  27. 27.
    G.N. Greaves, M.C. Wilding, S. Fearn, D. Langstaff, F. Kargl, Q. Vu Van, L. Hennet, I. Pozdnyakova, O. Majérus, R.J. Cernik, C. Martin, Adv. Synchr. Rad. 2, 135 (2008)CrossRefGoogle Scholar
  28. 28.
    L. Hennet, I. Pozdnyakova, A. Bytchkov, D.L. Price, G.N. Greaves, M. Wilding, S. Fearn, C.M. Martin, D. Thiaudière, J.-F. Bérar, N. Boudet, M.-L. Saboungi, J. Chem. Phys. 126, 074906 (2007)ADSCrossRefGoogle Scholar
  29. 29.
    C. Landron, L. Hennet, T. Jenkins, G.N. Greaves, J.-P. Coutures, A Soper, Phys. Rev. Lett. 86, 4839 (2001)ADSCrossRefGoogle Scholar
  30. 30.
    C. Landron, L. Hennet, J.-P. Coutures, T. Jenkins, C. Aletru, N.G. Greaves, A.K. Soper, G. Derbyshire, Rev. Sci. Instrum. 71, 1745 (2002)ADSCrossRefGoogle Scholar
  31. 31.
    J.K.R. Weber, C.J. Benmore, J.A. Tangeman, J. Siewenie, K.J. Hiera, J. Neutron Res. 11, 113 (2003)CrossRefGoogle Scholar
  32. 32.
    T. Schenk, D. Holland-Moritz, V. Simonet, R. Bellissent, D.M. Herlach, Phys. Rev. Lett. 89, 075507 (2002)ADSCrossRefGoogle Scholar
  33. 33.
    P.F. Paradis, T. Ishikawa, S. Yoda, J. Non-Cryst. Solids 312–314, 309 (2002)CrossRefGoogle Scholar
  34. 34.
    H.E. Fischer, G.J. Cuello, P. Palleau, D. Feltin, A.C. Barnes, Y.S. Badyal, J.M. Simonson, Appl. Phys. A 74, S160 (2002)ADSCrossRefGoogle Scholar
  35. 35.
    J.E. Enderby, D.M. North, P.A. Egelstaff, Phil. Mag. 14, 961 (1966)ADSCrossRefGoogle Scholar
  36. 36.
    D. Holland-Moritz, S. Stüber, H. Hartmann, T. Unruh, T. Hansen, A. Meyer, Phys. Rev. B 79, 064204 (2009)ADSCrossRefGoogle Scholar
  37. 37.
    S. Gruner, J. Marczinke, L. Hennet, W. Hoyer, G.J. Cuello, J. Phys. Cond. Mat. 21, 385403 (2009)ADSCrossRefGoogle Scholar
  38. 38.
    G. Jacobs, I. Egry, K. Maier, D. Platzek, J. Reske, R. Frahm, Rev. Sci. Instrum. 67, 3683 (1996)ADSCrossRefGoogle Scholar
  39. 39.
    C. Landron, L. Hennet, J.-P. Coutures, M. GailhanouM. Gramond, J.-F. Bérar, Europhys. Lett. 44, 429 (1998)ADSCrossRefGoogle Scholar
  40. 40.
    I. Egry, L. Hennet, M. Kehr, G. Mathiak, S. De Panfilis, I. Pozdnyakova, D. Zanghi, J. Chem. Phys. 129, 064508 (2008)ADSCrossRefGoogle Scholar
  41. 41.
    G.N. Greaves, M.C. Wilding, S. Fearn, D. Langstaff, F. Kargl, S. Cox, Q. Vu Van, O. Majérus, C.J. Benmore, J.K.R. Weber, C.M. Martin, L. Hennet, Science 322, 566 (2008)ADSCrossRefGoogle Scholar
  42. 42.
    A.C. Barnes, L.B. Skinner, P.S. Salmon, A. Bytchkov, I. Pozdnyakova, T.O. Farmer, H.E. Fischer, Phys. Rev. Lett. 103, 225702 (2009)ADSCrossRefGoogle Scholar
  43. 43.
    F. Delissen, J. Leiterer, R. Bienert, F. Emmerling, A.F. Thünemann, Anal. Bioanal. Chem. 392, 161 (2008)CrossRefGoogle Scholar
  44. 44.
    H.E. Fischer, L. Hennet, V. Cristiglio, D. Zanghi, I. Pozdnyakova, R.P. May, D.L. Price, S. Wood, J. Phys. Cond. Mat. 19, 415106 (2007)CrossRefGoogle Scholar
  45. 45.
    H. Sinn, B. Glorieux, L. Hennet, A. Alatas, M. Hu, E.E. Alp, F.J. Bermejo, D.L. Price, M.-L. Saboungi, Science 299, 2047 (2003)ADSCrossRefGoogle Scholar
  46. 46.
    A.H. Said, H. Sinn, A. Alatas, C.A. Burns, D.L. Price, M.-L. Saboungi, W. Schirmacher, Phys. Rev. B 74, 172202 (2006)ADSCrossRefGoogle Scholar
  47. 47.
    I. Pozdnyakova, L. Hennet, J.-F. Brun, D. Zanghi, S. Brassamin, V. Cristiglio, D.L. Price, F. Albergamo, A. Bytchkov, S. Jahn, M.-L. Saboungi, J. Chem. Phys. 126, 114505 (2007)ADSCrossRefGoogle Scholar
  48. 48.
    A. Meyer, S. Stüber, D. Holland-Moritz, O. Heinen, T. Unruh, Phys. Rev. B 77, 092201 (2008)ADSCrossRefGoogle Scholar
  49. 49.
    J. Kozaily, L. Hennet, H.E. Fischer, M. Koza, S. Brassamin, S. Magazù, F. Kargl, Phys. Stat. Sol. (to be published) (2011)Google Scholar
  50. 50.
    A. Meyer, H. Schober, D.B. Dingwell, Europhys. Lett. 59, 708 (2002)ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences and Springer 2011

Authors and Affiliations

  • L. Hennet
    • 1
    Email author
  • V. Cristiglio
    • 2
  • J. Kozaily
    • 2
  • I. Pozdnyakova
    • 1
  • H. E. Fischer
    • 2
  • A. Bytchkov
    • 3
  • J. W. E. Drewitt
    • 1
  • M. Leydier
    • 1
  • D. Thiaudière
    • 4
  • S. Gruner
    • 5
  • S. Brassamin
    • 1
  • D. Zanghi
    • 1
  • G. J. Cuello
    • 2
  • M. Koza
    • 2
  • S. Magazù
    • 1
  • G. N. Greaves
    • 6
  • D. L. Price
    • 1
  1. 1.CEMHTI and University of OrléansOrléans Cedex 02France
  2. 2.ILLGrenoble Cedex 09France
  3. 3.ESRFGrenoble Cedex 09France
  4. 4.Synchrotron SOLEILGif-sur-Yvette CedexFrance
  5. 5.Institute of PhysicsChemnitz UTChemnitzGermany
  6. 6.IMAPS, University of WalesAberystwythUK

Personalised recommendations