Levitation methods for structural and dynamical studies of liquids at high temperatures

  • I. Egry
  • D. Holland-Moritz


In recent years, levitation methods have been increasingly used to study the atomic structure and dynamics of high-temperature liquids, in particular metallic melts. These methods provide a containerless and, consequently, high-purity sample environment. No corrections for signals due to a crucible need to be made, and deep undercoolings of the liquid become possible, reducing the effect of thermal fluctuations. On the other hand, the sample position and, hence, the scattering geometry is not fixed and the free sample surface exhibits capillary waves. Nevertheless, the combination of levitation techniques with x-ray or neutron sources has proven to be possible and successful. This paper reviews the progress made in this field during the last 10 years or so. It discusses the different levitation techniques: aerodynamic, electromagnetic, electrostatic, as well as the applied spectroscopic techniques: x-ray and neutron diffraction, x-ray absorption and quasi-elastic neutron diffraction. Some recent results are also highlighted.


European Physical Journal Special Topic Neighbour Distance Amorphous Metal Undercooled Liquid Electromagnetic Levitation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    D.M. Herlach, Mat. Sci. Eng. R12, 177 (1994)Google Scholar
  2. 2.
    L.M. Racz, I. Egry, Rev. Sci. Instrum. 66, 4254 (1995)ADSCrossRefGoogle Scholar
  3. 3.
    F.C. Frank, Proc. R. Soc. London A 215, 43 (1952)ADSCrossRefGoogle Scholar
  4. 4.
    D. Holland-Moritz, D.M. Herlach, K. Urban, Phys. Rev. Lett. 71, 1196 (1993)ADSCrossRefGoogle Scholar
  5. 5.
    R. Weber, S. Krishnan, P. Nordine, JOM Mag 43, 8 (1991)CrossRefGoogle Scholar
  6. 6.
    G. Jacobs, I. Egry, K. Maier, D. Platzek, J. Reske, R. Frahm, Rev. Sci. Instr. 67, 3683 (1996)ADSCrossRefGoogle Scholar
  7. 7.
    S. Krishnan, D. Price, J. Phys.: Condens. Matter 12, R145 (2000)ADSCrossRefGoogle Scholar
  8. 8.
    L. Hennet, D. Thiaudière, M. Gailhanou, C. Landron, J.P. Coutures, D.L. Price, Rev. Sci. Instrum. 73, 125 (2002)ADSCrossRefGoogle Scholar
  9. 9.
    C. Landron, L. Hennet, T.E. Jenkins, G.N. Greaves, J.P. Coutures, A.K. Soper, Phys. Rev. Lett. 86, 4839 (2001)ADSCrossRefGoogle Scholar
  10. 10.
    K.F. Kelton, G.W. Lee, A.K. Gangopadhyay, R.W. Hyers, T.J. Rathz, J.R. Rogers, M.B. Robinson, D.S. Robinson, Phys. Rev. Lett. 90, 195504 (2003)ADSCrossRefGoogle Scholar
  11. 11.
    G.W. Lee, A.K. Gangopadhyay, K.F. Kelton, R.W. Hyers, T.J. Rathz, J.R. Rogers, D.S. Robinson, Phys. Rev. Lett. 93, 037802 (2004)ADSCrossRefGoogle Scholar
  12. 12.
    K. Higuchi, K. Kimura, A. Mizuno, M. Watanabe, Y. Katayama, K. Kuribayashi, J. Non-Crystall. Solids 353, 2997 (2007)ADSCrossRefGoogle Scholar
  13. 13.
    G. Mathiak, I. Egry, L. Hennet, D. Thiaudiere, I. Pozdnyakova, D. Price, Int. J. Thermophysics 26, 1151 (2005)ADSCrossRefGoogle Scholar
  14. 14.
    W.-K. Rhim, S.K. Chang, D. Barber, K.F. Man, G. Gutt, A. Rulison, R.E. Spjut, Rev. Sci. Instrum. 64, 2961 (1993)ADSCrossRefGoogle Scholar
  15. 15.
    P. Paradis, T. Ishikawa, S. Yoda, Measurement Sci. Technology 16, 452 (2005)ADSCrossRefGoogle Scholar
  16. 16.
    T. Ishikawa, P. Paradis, T. Itami, S. Yoda, Measurement Sci. Technology 16, 443 (2005)ADSCrossRefGoogle Scholar
  17. 17.
    T. Kordel, D. Holland-Moritz, T. Unruh, J. Peters, A. Meyer (to be published)Google Scholar
  18. 18.
    T.M. Hayes, J.B. Boyce, Sol. State Phys. 37, 173 (1982)CrossRefGoogle Scholar
  19. 19.
    A. Filipponi, J. Phys., Condens. Matter 13, R23 (2001)ADSCrossRefGoogle Scholar
  20. 20.
    P. D’Angelo, A. Di Nola, A. Filipponi, N.V. Pavel, P.D. Roccatano, J. Chem. Phys. 100, 985 (1994)ADSCrossRefGoogle Scholar
  21. 21.
    P. Pfalzer, J.-P. Urbach, M. Klemm, S. Horn, M.L. denBoer, A.I. Frenkel, J.P. Kirkland, Phys. Rev. B 60, 9335 (1999)ADSCrossRefGoogle Scholar
  22. 22.
    G. Jacobs, I. Egry, Phys. Rev. B 59, 3961 (1999)ADSCrossRefGoogle Scholar
  23. 23.
    H. Kimura, M. Watanabe, K. Izumi, T. Hibiya, D. Holland-Moritz, T. Schenk, K.-R. Bauchspieß, S. Schneider, I. Egry, K. Funakoshi, M. Hanfland, Appl. Phys. Letters 78, 604 (2001)ADSCrossRefGoogle Scholar
  24. 24.
    D. Li, D. Herlach, Europhys. Lett. 34, 423 (1996)ADSCrossRefGoogle Scholar
  25. 25.
    S. Ansell, S. Krishnan, J.J. Felten, D. Price, J. Phys. C11, 8167 (1999)Google Scholar
  26. 26.
    T.H. Kim, G.W. Lee, B. Sieve, A.K. Gangopadhyay, R.W. Hyers, T.J. Rathz, J.R. Rogers, D.S. Robinson, K.F. Kelton, A.I. Goldman, Phys. Rev. Lett. 95, 085501 (2005)ADSCrossRefGoogle Scholar
  27. 27.
    S. Krishnan, L. Hennet, T. Key, B. Glorieux, M.-L. Saboungi, D.L. Price, J. Non-Cryst. Sol. 253, 2975 (2007)ADSCrossRefGoogle Scholar
  28. 28.
    G. Mathiak, J. Brillo, A. Bytchkov, I. Egry, L. Hennet, I. Pozdnyakova, D.L. Price, D. Thiaudiere, D. Zanghi, J. Non-Cryst. Solids 352, 4008 (2006)ADSCrossRefGoogle Scholar
  29. 29.
    I. Egry, L. Hennet, M. Kehr, G. Mathiak, S. De Panfilis, I. Pozdnyakova, D. Zanghi, J. Chem. Phys., 129, 064508 (2008)ADSCrossRefGoogle Scholar
  30. 30.
    D. Holland-Moritz, T. Schenk, P. Convert, T. Hansen, D.M. Herlach, Meas. Sci. Techn. 16, 372 (2005)ADSCrossRefGoogle Scholar
  31. 31.
    T. Schenk, D. Holland-Moritz, V. Simonet, R. Bellissent, D.M. Herlach, Phys. Rev. Lett., 89, 075507 (2002)ADSCrossRefGoogle Scholar
  32. 32.
    D. Holland-Moritz, O. Heinen, R. Bellissent, T. Schenk, D.M. Herlach, Intern. J. Mat. Res. 97, 948 (2006)Google Scholar
  33. 33.
    D. Holland-Moritz, S. Stüber, H. Hartmann, T. Unruh, T. Hansen, A. Meyer. Phys. Rev. B 79, 064204 (2009)ADSCrossRefGoogle Scholar
  34. 34.
    T. Schenk, V. Simonet, D. Holland-Moritz, R. Bellissent, T. Hansen, P. Convert, D.M. Herlach Europhys. Lett. 65, 34 (2004)ADSCrossRefGoogle Scholar
  35. 35.
    T. Unruh, J. Neuhaus, W. Petry, Nucl. Instrum. Methods Phys. Res. A 580, 1414 (2007)ADSGoogle Scholar
  36. 36.
    A. Meyer, S. Stüber, D. Holland-Moritz, O. Heinen, T. Unruh, PRB 77, 092201 (2008)ADSCrossRefGoogle Scholar
  37. 37.
    S. Mavila Chathoth, A. Meyer, M.M. Koza, F. Juranyi, Appl. Phys. Lett. 85, 4881 (2004)ADSCrossRefGoogle Scholar
  38. 38.
    G. Mathiak, A. Griesche, K.H. Kraatz, G. Frohberg, J. Non-Cryst. Solids 205-207, 412 (1996)ADSCrossRefGoogle Scholar
  39. 39.
    T. Itami, T. Masaki, H. Aoki, S. Munejiri, M. Uchida, S. Masumoto, K. Kamiyama, K. Hoshino, J. Non-Cryst. Solids 232-314, 177 (2002)CrossRefGoogle Scholar
  40. 40.
    W. Götze, L. Sjögren, Rep. Prog. Phys. 55, 241 (1992)CrossRefGoogle Scholar
  41. 41.
    S. Stüber, D. Holland-Moritz, T. Unruh, A. Meyer, Phys. Rev. B 81, 024204 (2010)ADSCrossRefGoogle Scholar
  42. 42.
    S. Mavila Chathoth, A. Meyer, M.M. Koza, F. Juranyi, Appl. Phys. Lett. 85, 4881 (2004)ADSCrossRefGoogle Scholar
  43. 43.
    Y. Plevachuk, I. Egry, J. Brillo, D. Holland-Moritz, I. Kaban, Int. J. Mater. Res. 98, 107 (2007)Google Scholar

Copyright information

© EDP Sciences and Springer 2011

Authors and Affiliations

  • I. Egry
    • 1
  • D. Holland-Moritz
    • 1
  1. 1.Institut für Materialphysik im WeltraumDeutsches Zentrum für Luft- und Raumfahrt (DLR)KölnGermany

Personalised recommendations