Advertisement

Metallic liquid hydrogen and likely Al2O3 metallic glass

  • W. J. Nellis
Regular Article
  • 112 Downloads

Abstract

Dynamic compression has been used to synthesize liquid metallic hydrogen at 140 GPa (1.4 million bar) and experimental data and theory predict Al2O3 might be a metallic glass at ∼ 300 GPa. The mechanism of metallization in both cases is probably a Mott-like transition. The strength of sapphire causes shock dissipation to be split differently in the strong solid and soft fluid. Once the 4.5-eV H-H and Al-O bonds are broken at sufficiently high pressures in liquid H2 and in sapphire (single-crystal Al2O3), electrons are delocalized, which leads to formation of energy bands in fluid H and probably in amorphous Al2O3. The high strength of sapphire causes shock dissipation to be absorbed primarily in entropy up to ∼400 GPa, which also causes the 300-K isotherm and Hugoniot to be virtually coincident in this pressure range. Above ∼400 GPa shock dissipation must go primarily into temperature, which is observed experimentally as a rapid increase in shock pressure above ∼400 GPa. The metallization of glassy Al2O3, if verified, is expected to be general in strong oxide insulators. Implications for Super Earths are discussed.

Keywords

Sapphire Metallic Glass European Physical Journal Special Topic Entropy Generation Shock Compression 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    W.J. Nellis, S.T. Weir, A.C. Mitchell, Phys. Rev. B 59, 3434 (1999)ADSCrossRefGoogle Scholar
  2. 2.
    S.T. Weir, A.C. Mitchell, W.J. Nellis, Phys. Rev. Lett. 76, 1860 (1996)ADSCrossRefGoogle Scholar
  3. 3.
    W.J. Nellis, Review of High Pressure Science and Technology (Japan) 17, 328 (2007)CrossRefGoogle Scholar
  4. 4.
    V.E. Fortov, V. Ya. Ternovoi, M.V. Zhernokletov, M.A. Mochalov, A.L. Mikhailov, A.S. Filimonov, A.A. Pyalling, V.B. Mintsev, V.K. Gryaznov, I.L. Iosilevskii, JETP 97, 259 (2003)ADSCrossRefGoogle Scholar
  5. 5.
    W.J. Nellis, Rep. Prog. Phys. 69, 1479 (2006)ADSCrossRefGoogle Scholar
  6. 6.
    R. Chau, A.C. Mitchell, R.W. Minich, W.J. Nellis, Phys. Rev. Lett. 90, 245501 (2003)ADSCrossRefGoogle Scholar
  7. 7.
    W.J. Nellis, Phys. Rev. B 82, 092101 (2010)ADSCrossRefGoogle Scholar
  8. 8.
    M. Bastea, A.C. Mitchell, W.J. Nellis, Phys. Rev. Lett. 86, 3108 (29001)CrossRefGoogle Scholar
  9. 9.
    F. Hensel, E. Marceca, W.C. Pilgrim, J. Phys. Condens. Matter 10, 11395 (1998)ADSCrossRefGoogle Scholar
  10. 10.
    F. Herman, S. Skilman, Atomic Structure Calculations (Prentice-Hall, Englewood Cliffs, 1963)Google Scholar
  11. 11.
    N.F. Mott, E.A. Davis, Electronic Processes in Non-crystalline Materials, 2nd edn. (Oxford, London, 1979), p. 103Google Scholar
  12. 12.
    T.T. Chen, J.T. Chen, J.D. Leslie, H.J.T. Smith, Phys. Rev. Lett. 22, 526 (1969)ADSCrossRefGoogle Scholar
  13. 13.
    J.S. Schilling, in Handbook of High-Temperature Superconductivity: Theory and Experiment, edited by J.B. Schrieffer, J.S. Brooks (Springer, New York, 2007)Google Scholar
  14. 14.
    W.J. Nellis, Phil. Mag. B 79, 655 (1999)ADSCrossRefGoogle Scholar
  15. 15.
    P.A. Urtiew, J. Appl. Phys. 45, 3490 (1974)ADSCrossRefGoogle Scholar
  16. 16.
    G.I. Kanel, W.J. Nellis, A.S. Savinykh, S.V. Razorenov, A.M. Rajendran, J. Appl. Phys. 106, 043524 (2009)ADSCrossRefGoogle Scholar
  17. 17.
    W.J. Nellis, G.I. Kanel, S.V. Razorenov, A.S. Savinykh, A.M. Rajendran, J. Phys.: Conf. Ser. 215, 012148 (2010)ADSCrossRefGoogle Scholar
  18. 18.
    R.G. McQueen, S.P. Marsh, J.W. Taylor, J.N. Fritz, W.J. Carter, in High-Velocity Impact Phenomena, edited by R. Kinslow (Academic, New York, 1970)Google Scholar
  19. 19.
    D. Erskine, in High-Pressure Science and Technology-1993, edited by S.C. Schmidt, J.W. Shaner, G.A. Samara, M. Ross (AIP Press, New York, 1994), p. 141Google Scholar
  20. 20.
    K. Umemoto, R.M. Wentzcovitch, Proc. Natl. Acad. Sci. U.S.A. 105, 6526 (2008)ADSCrossRefGoogle Scholar
  21. 21.
    D.G. Hicks, P.M. Celliers, G.W. Collins, J.H. Eggert, S.J. Moon, Phys. Rev. Lett. 91, 035502 (2003)ADSCrossRefGoogle Scholar
  22. 22.
    D.E. Hare, N.C. Holmes, D.J. Webb, Phys. Rev. B 66, 014108 (2002)ADSCrossRefGoogle Scholar
  23. 23.
    K. Kondo, in High-Pressure Science and Technology-1993, edited by S.C. Schmidt, J.W. Shaner, G.A. Samara, M. Ross (AIP Press, New York, 1994), p. 1555Google Scholar
  24. 24.
    Y. Wang, D.E. Mikkola, Mat. Sci. Eng. A 148, 25 (1991)CrossRefGoogle Scholar
  25. 25.
    S. Ono, A.R. Oganov, T. Koyama, H. Shimizu, Earth Planet. Sci. Lett. 246, 326 (2006)ADSCrossRefGoogle Scholar
  26. 26.
    S.T. Weir, A.C. Mitchell, W.J. Nellis, J. Appl. Phys. 80, 1522 (1996)ADSCrossRefGoogle Scholar
  27. 27.
    W.J. Nellis, J. Phys.: Conf. Ser. 121, 062005 (2008)ADSCrossRefGoogle Scholar
  28. 28.
    R.F. Trunin, G.V. Simakov, M.A. Podurets, Sov. Phys. Solid Earth 1, 8 (1971)Google Scholar
  29. 29.
    T. Mashimo, R. Chau, Y. Zhang, T. Kobayoshi, T. Sekine, K. Fukuoka, Y. Syono, M. Kodama, W.J. Nellis, Phys. Rev. Lett. 96, 105504 (2006)ADSCrossRefGoogle Scholar
  30. 30.
    L.V. Altshuler, M.A. Podurets, G.V. Simakov, R.F. Trunin, Sov. Phys. Solid State 15, 969 (1973)Google Scholar

Copyright information

© EDP Sciences and Springer 2011

Authors and Affiliations

  • W. J. Nellis
    • 1
  1. 1.Department of PhysicsHarvard UniversityCambridgeUSA

Personalised recommendations