Advertisement

Synchrotron radiation studies of an expanded fluid alkali metal

From the structure towards the electronic state
  • K. MatsudaEmail author
  • K. Tamura
  • M. Inui
  • Y. Kajihara
  • T. Nagao
  • M. Yao
  • M. Itou
  • Y. Sakurai
Review

Abstract

We have carried out x-ray diffraction and small-angle x-ray scattering measurements of expanded fluid alkali metal rubidium (Rb) and observed that the nearest neighbor distance decreases despite the fact that the average interatomic distance increases with volume expansion, indicating that the attractive force among ions is enhanced. Such structural change emerges in the density range where the fluid is still metallic. The density range also corresponds with the region where the instability of the electron gas has been theoretically predicted, suggesting the modulation in the charge fluctuations of the electron gas plays an essential role for such enhanced attraction among ions. Motivated by these unusual structural features, we have moved on investigating the electronic state in expanded fluid Rb through synchrotron-based high-resolution Compton scattering experiments. We have succeeded in measuring the Compton profile of fluid Rb using newly developed a high-pressure vessel for the Compton scattering experiments.

Keywords

Alkali Metal Synchrotron Radiation European Physical Journal Special Topic Pair Distribution Function Amorphous Metal 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    F. Hensel, W.W. Warren, Jr., Fluid Metals: Liquid-Vapor Transitions of Metals (Princeton University Press, 1999)Google Scholar
  2. 2.
    C.T. Ewing, J.P. Stone, J.R. Spann, R.R. Miller, J. Phys. Chem. 71, 473 (1967)CrossRefGoogle Scholar
  3. 3.
    H.P. Pfeifer, W. Freyland, F. Hensel, Ber. Bunsenges. Phys. Chem. 83, 204 (1979)Google Scholar
  4. 4.
    S. Jüngst, B. Knuth, F. Hensel, Phys. Rev. Lett. 55, 2160 (1985)ADSCrossRefGoogle Scholar
  5. 5.
    F. Hensel, M. Stolz, G. Hohl, R. Winter, W. Götzlaff, J. Phys. Colloq. C 5 suppl. 1, 191 (1991)Google Scholar
  6. 6.
    G. Franz, W. Freyland, F. Hensel, J. Phys. Colloq. C 8, 70 (1980)Google Scholar
  7. 7.
    W. Freyland, Comments Solid State Phys. 10, 1 (1981)Google Scholar
  8. 8.
    W. Freyland, Phys. Rev. B 20, 5104 (1979)ADSCrossRefGoogle Scholar
  9. 9.
    W. Freyland, J. Phys. Colloq. C 8, 74 (1980)Google Scholar
  10. 10.
    W.W. Warren Jr., G.F. Brennert, Phys. Rev. B 39, 4038 (1989)ADSCrossRefGoogle Scholar
  11. 11.
    T.E. Faber, Introduction to the theory of liquid metals (Cambridge University Press, 1972)Google Scholar
  12. 12.
    D.J. Gonzalez, D.A. NG, M. Silbert, J. Non-Cryst. Solids 117/118, 469 (1990)CrossRefGoogle Scholar
  13. 13.
    R. Winter, F. Hensel, T. Bodensteiner, W. Gläser, Ber. Bunsenges. Phys. Chem. 91, 1327 (1987)Google Scholar
  14. 14.
    G. Franz, W. Freyland, W. Gläser, F. Hensel, E. Schneider, J. Phys. Col. C 8, 194 (1980)Google Scholar
  15. 15.
    S. Hosokawa, et al., J. Non-Cryst. Solids 250-252, 159 (1999)ADSCrossRefGoogle Scholar
  16. 16.
    W.-C. Pilgrim, M. Ross, L.H. Yang, F. Hensel, Phys. Rev. Lett. 78, 3685 (1997)ADSCrossRefGoogle Scholar
  17. 17.
    R. Redmer, W.W. Warren, Jr., Phys. Rev. B 48, 14892 (1993)ADSCrossRefGoogle Scholar
  18. 18.
    G. Giuliani, G. Vignale, Quantum Theory of the Electron Liquid (Cambridge University Press, 2005)Google Scholar
  19. 19.
    E.P. Wigner, Phys. Rev. 46, 1002 (1934)ADSzbMATHCrossRefGoogle Scholar
  20. 20.
    D.M. Ceperley, B.J. Alder, Phys. Rev. Lett. 45, 566 (1980)ADSCrossRefGoogle Scholar
  21. 21.
    W. Kohn, J.M. Luttinger, Phys. Rev. Lett. 15, 524 (1965)MathSciNetADSCrossRefGoogle Scholar
  22. 22.
    Y. Takada, Phys. Rev. B 47, 5202 (1993)ADSCrossRefGoogle Scholar
  23. 23.
    G.D. Mahan, Many-Particle Physics (Kluwer Academic/Plenum, New York, 2000)Google Scholar
  24. 24.
    N. Wiser, M.H. Cohen, J. Phys. C: Solid State Phys. 2, 193 (1969)ADSCrossRefGoogle Scholar
  25. 25.
    M.D. Llano, V.V. Tolmachev, Phys. Lett. B 37, 37 (1971)ADSCrossRefGoogle Scholar
  26. 26.
    C.M. Care, N.H. March, Adv. Phys. 24, 101 (1975)ADSCrossRefGoogle Scholar
  27. 27.
    O.V. Dolgov, D.A. Kirzhnits, E.G. Maksimov, Rev. Mod. Phys. 53, 81 (1981)ADSCrossRefGoogle Scholar
  28. 28.
    O.V. Dolgov, E.G. Maksimov, Sov. Phys. Usp. 25, 688 (1982)ADSCrossRefGoogle Scholar
  29. 29.
    Y. Takada, J. Supercond. 18, 185 (2005)CrossRefGoogle Scholar
  30. 30.
    K. Takayanagi, E. Lipparini, Phys. Rev. B 56, 4872 (1997)ADSCrossRefGoogle Scholar
  31. 31.
    D. Pines, P. Nozieres, The theory of Quantum Liquids, vol. 1 (W.A. Benjamin, inc., New York, 1966)Google Scholar
  32. 32.
    K. Matsuda, K. Tamura, M. Katoh, M. Inui, Rev. Sci. Instrum. 75, 709 (2004)ADSCrossRefGoogle Scholar
  33. 33.
    K. Tamura, M. Inui, S. Hosokawa, Rev. Sci. Instrum. 70, 144 (1999)ADSCrossRefGoogle Scholar
  34. 34.
    K. Tamura, M. Inui, J. Phys.: Condens. Matter 13, R337 (2001)ADSCrossRefGoogle Scholar
  35. 35.
    M. Isshiki, Y. Ohishi, S. Goto, K. Takeshita, T. Ishikawa, Nucl. Instrum. Methods Phys. Res., Sect. A 467-468, 663 (2001)ADSCrossRefGoogle Scholar
  36. 36.
    K. Matsuda, K. Tamura, M. Inui, Phys. Rev. Lett. 98, 096401 (2007)ADSCrossRefGoogle Scholar
  37. 37.
    C.A. Kukkonen, J.W. Wilkins, Phys. Rev. B 19, 6075 (1979)ADSCrossRefGoogle Scholar
  38. 38.
    H. Maebashi, Y. Takada, J. Phys. Soc. Jpn. 78, 053706 (2009)ADSCrossRefGoogle Scholar
  39. 39.
    P. Eisenberger, P.M. Platzman, Phys. Rev. A 2, 415 (1970)ADSCrossRefGoogle Scholar
  40. 40.
    M.J. Cooper, et al. (eds.) X-ray Compton Scattering (Oxford Univ. Pr., 2004)Google Scholar
  41. 41.
    W. Shülke, Electron Dynamics by Inelastic X-Ray Scattering (Oxford Univ. Pr., 2007)Google Scholar
  42. 42.
    F. Itoh, T. Honda, K. Suzuki, J. Phys. Soc. Jpn. 47, 122 (1979)ADSCrossRefGoogle Scholar
  43. 43.
    T. Honda, F. Itoh, K. Suzuki, J. Phys. Soc. Jpn. 48, 557 (1980)ADSCrossRefGoogle Scholar
  44. 44.
    M. Inui, D. Ishikawa, K. Matsuda, K. Tamura, A.Q.R. Baron, Cond. Matter Phys. 11, 83 (2008)Google Scholar
  45. 45.
    M. Itou, et al., Nucl. Instrum. Meth. A 467-468, 1109 (2001)ADSCrossRefGoogle Scholar
  46. 46.
    R.W. Ohse (ed.), Handbook of Thermodynamic and Transport Properties of Alkali Metals (Oxford, Blackwell Scientific, 1985)Google Scholar
  47. 47.
    F. Biggs, L.B. Mendelsohn, J.B. Mann, At. Nucl. Data Tables 16, 201 (1975)ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences and Springer 2011

Authors and Affiliations

  • K. Matsuda
    • 1
    Email author
  • K. Tamura
    • 2
  • M. Inui
    • 3
  • Y. Kajihara
    • 3
  • T. Nagao
    • 1
  • M. Yao
    • 1
  • M. Itou
    • 4
  • Y. Sakurai
    • 4
  1. 1.Graduate School of ScienceKyoto UniversityKyotoJapan
  2. 2.Graduate School of EngineeringKyoto UniversitySakyo-ku, KyotoJapan
  3. 3.Graduate School of Integrated Arts and SciencesHiroshima UniversityHigashi, HiroshimaJapan
  4. 4.Japan Synchrotron Radiation Research InstituteHyogoJapan

Personalised recommendations