Advertisement

Transverse excitations in liquid Ga

  • S. HosokawaEmail author
  • M. Inui
  • Y. Kajihara
  • K. Matsuda
  • T. Ichitsubo
  • W. -C. Pilgrim
  • H. Sinn
  • L. E. González
  • D. J. González
  • S. Tsutsui
  • A. Q. R. Baron
Regular Article

Abstract

The transverse acoustic excitation modes were detected by inelastic x-ray scattering in liquid Ga in the Q range above 9 nm−1 although liquid Ga is mostly described by a hard-sphere liquid. An ab initio molecular dynamics simulation clearly supports this finding. From the detailed analysis for the S(Q,ω) spectra with a good statistic quality, the lifetime of 0.5 ps and the propagating length of 0.4–0.5 nm can be estimated for the transverse acoustic phonon modes, which may correspond the lifetime and size of cages formed instantaneously in liquid Ga. The microscopic Poisson’s ratio estimated from the dynamic velocities of sound is 0.42, indicating a rubber-like soft elastic property of the cages.

Keywords

Molecular Dynamic Simulation European Physical Journal Special Topic Transverse Mode Excitation Mode Phonon Excitation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    D. Levesque, L. Verlet, J. Kürkijarvi, Phys. Rev. A 7, 1690 (1973)ADSCrossRefGoogle Scholar
  2. 2.
    J.-P. Hansen, I.R. McDonald, E.L. Pollock, Phys. Rev. A 11, 1025 (1975)ADSCrossRefGoogle Scholar
  3. 3.
    J.P. Boon, S. Yip, Molecular Hydrodynamics (McGraw-Hill, New York, 1980)Google Scholar
  4. 4.
    U. Balucani, M. Zoppi, Dynamics of the Liquid State (Clarendon Press, Oxford, 1994)Google Scholar
  5. 5.
    J.-P. Hansen, I.R. McDonald, Theory of Simple Liquids, 3rd edition (Elsevier, Amsterdam, 2006)Google Scholar
  6. 6.
    F. Shimojo, K. Hoshino, M. Watabe, J. Phys. Soc. Jpn. 63, 1821 (1994)ADSCrossRefGoogle Scholar
  7. 7.
    G. Kahl, S. Kambayashi, J. Phys.: Condens. Matter 6, 10897 (1994)ADSCrossRefGoogle Scholar
  8. 8.
    S. Hosokawa, W.-C. Pilgrim, H. Sinn, E.E. Alp, Physica B 350, 262 (2004)ADSCrossRefGoogle Scholar
  9. 9.
    S. Hosokawa, W.-C. Pilgrim, H. Sinn, E.E. Alp, J. Phys.: Condens. Matter 20, 114107 (2008)ADSCrossRefGoogle Scholar
  10. 10.
    S. Hosokawa, M. Inui, Y. Kajihara, K. Matsuda, T. Ichitsubo, W.-C. Pilgrim, H. Sinn, L.E. González, D.J. González, S. Tsutsui, A.Q.R. Baron, Phys. Rev. Lett. 102, 105502 (2009)ADSCrossRefGoogle Scholar
  11. 11.
    A.Q.R. Baron, Y. Tanaka, S. Goto, K. Takeshita, T. Matsushita, T. Ishikawa, J. Phys. Chem. Solids 61, 461 (2000)ADSCrossRefGoogle Scholar
  12. 12.
    K. Tamura, M. Inui, S. Hosokawa, Rev. Sci. Instrum. 70, 144 (1999)ADSCrossRefGoogle Scholar
  13. 13.
    S. Hosokawa, W.-C. Pilgrim, Rev. Sci. Instrum. 72, 1721 (2001)ADSCrossRefGoogle Scholar
  14. 14.
    B. Fåk, B. Dorner, Institut Laue-Langevin Reports, 92FA008S (1992)Google Scholar
  15. 15.
    T. Scopigno, A. Filipponi, M. Krisch, G. Monaco, G. Ruocco, F. Sette, Phys. Rev. Lett. 89, 255506 (2002)ADSCrossRefGoogle Scholar
  16. 16.
    L.E. Bove, F. Formisano, F. Sacchetti, C. Petrillo, A. Ivanov, B. Dorner, F. Barocchi, Phys. Rev. B 71, 014207 (2005)ADSCrossRefGoogle Scholar
  17. 17.
    M. Inui, S. Takeda, T. Uechi, J. Phys. Soc. Jpn. 61, 3203 (1992)ADSCrossRefGoogle Scholar
  18. 18.
    J.M. Holender, M.J. Gillan, M.C. Payne, A.D. Simpson, Phys. Rev. B 52, 967 (1995)ADSCrossRefGoogle Scholar
  19. 19.
    L.E. González, D.J. González, Phys. Rev. B 77, 064202 (2008)ADSCrossRefGoogle Scholar
  20. 20.
    T. Scopigno, M. Dõastuto, M. Krisch, G. Ruocco, F. Sette, Phys. Rev. B 64, 012301 (2001)ADSCrossRefGoogle Scholar
  21. 21.
    G. Ruocco, F. Sette, J. Phys.: Condens. Matter 11, R259 (1999)ADSCrossRefGoogle Scholar
  22. 22.
    R. Zwanzig, J. Chem. Phys. 39, 1714 (1963)ADSCrossRefGoogle Scholar
  23. 23.
    H. Mori, Prog. Theor. Phys. 33, 423 (1965)ADSzbMATHCrossRefGoogle Scholar
  24. 24.
    A.F. Ioffe, A.R. Regel, Prog. Semicond. 4, 237 (1960)Google Scholar
  25. 25.
    T.J. Langill, J. Trivisonno, Can. J. Phys. 53, 581 (1975)ADSCrossRefGoogle Scholar
  26. 26.
    S. Hosokawa, M. Inui, K. Matsuda, D. Ishikawa, A.Q.R. Baron, Phys. Rev. B 77, 174203 (2008)ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences and Springer 2011

Authors and Affiliations

  • S. Hosokawa
    • 1
    • 2
    Email author
  • M. Inui
    • 3
  • Y. Kajihara
    • 3
  • K. Matsuda
    • 4
  • T. Ichitsubo
    • 5
  • W. -C. Pilgrim
    • 2
  • H. Sinn
    • 6
  • L. E. González
    • 7
  • D. J. González
    • 7
  • S. Tsutsui
    • 8
  • A. Q. R. Baron
    • 8
    • 9
  1. 1.Center for Materials Research Using Third-Generation Synchrotron Radiation FacilitiesHiroshima Institute of TechnologyHiroshimaJapan
  2. 2.Physikalische Chemie, Fachbereich ChemiePhilipps Universiät MarburgMarburgGermany
  3. 3.Graduate School of Integrated Arts and SciencesHiroshima UniversityHigashi-HiroshimaJapan
  4. 4.Department of Physics, Graduate School of ScienceKyoto UniversityKyotoJapan
  5. 5.Department of Materials Science and Engineering, Graduate School of EngineeringKyoto UniversityKyotoJapan
  6. 6.European XFEL GmbHHamburgGermany
  7. 7.Departamento de Física TeóricaUniversidad de ValladolidValladolidSpain
  8. 8.SPring-8/JASRIHyogoJapan
  9. 9.RIKEN SPring-8 CenterHyogoJapan

Personalised recommendations