Advertisement

Non-hydrodynamic collective modes in liquid metals and alloys

Review

Abstract

A short review of analytical and numerical results, obtained for collective dynamics in liquid metals and alloys within a theoretical approach of Generalized Collective Modes (GCM) is presented. The GCM approach permits to represent dynamic structure factors in wide ranges of wave numbers and frequencies as a sum of contributions from hydrodynamic and non-hydrodynamic processes. The origin of collective modes that make important contributions to dynamic structure factors beyond the hydrodynamic regime in liquid metals and alloys is discussed.

Keywords

Heat Wave European Physical Journal Special Topic Collective Mode Collective Excitation Hydrodynamic Regime 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J.-P. Boon, S. Yip, Molecular Hydrodynamics (McGraw-Hill, 1980)Google Scholar
  2. 2.
    J.-P. Hansen, I.R. McDonald, Theory of Simple Liquids (Academic, 1986)Google Scholar
  3. 3.
    C. Cohen, J.W.H. Sutherland, J.M. Deutch, Phys. Chem. Liq. 2, 213 (1971)CrossRefGoogle Scholar
  4. 4.
    U. Balucani, M. Zoppi, Dynamics of the liquid state (Clarendon, 1994)Google Scholar
  5. 5.
    I.M. deSchepper, E.G.D. Cohen, C. Bruin, J.C. van Rijs, W. Montfrooij, L.A. de Graaf, Phys. Rev. A 38, 271 (1988)ADSCrossRefGoogle Scholar
  6. 6.
    I. Mryglod, Condens. Matter Phys. 1, 753 (1998)Google Scholar
  7. 7.
    I.M. Mryglod, I.P. Omelyan, M.V. Tokarchuk, Mol. Phys. 84, 235 (1995)ADSCrossRefGoogle Scholar
  8. 8.
    T. Bryk, I. Mryglod, G. Kahl, Phys. Rev. E 56, 2903 (1997)ADSCrossRefGoogle Scholar
  9. 9.
    T. Scopigno, G. Ruocco, F. Sette, Rev. Mod. Phys. 77, 881 (2005)ADSCrossRefGoogle Scholar
  10. 10.
    T. Bryk, I. Mryglod, Condens. Matter Phys. 7, 471 (2004)Google Scholar
  11. 11.
    D.D. Joseph, L. Preziosi, Rev. Mod. Phys. 61, 41 (1989)MathSciNetADSzbMATHCrossRefGoogle Scholar
  12. 12.
    F. Bencivenga, A. Cunsolo, M. Krisch, G. Monaco, G. Ruocco, F. Sette, Europhys. Lett. 75, 70 (2006)ADSCrossRefGoogle Scholar
  13. 13.
    J.-F. Wax, R. Albaki, J.-L. Bretonnet, Phys. Rev. B 62, 14818 (2000)ADSCrossRefGoogle Scholar
  14. 14.
    T. Bryk, I. Mryglod, T. Scopigno, G. Ruocco, F. Gorelli, M. Santoro, J. Chem. Phys. 133, 024502 (2010)ADSCrossRefGoogle Scholar
  15. 15.
    T. Bryk, I. Mryglod, Phys. Rev. E 64, 322021 (2001)CrossRefGoogle Scholar
  16. 16.
    T. Bryk, I. Mryglod, J. Phys.: Condens. Matter. 13, 1343 (2001)ADSCrossRefGoogle Scholar
  17. 17.
    G.G. Simeoni, T. Bryk, F.A. Gorelli, M. Krisch, G. Ruocco, M. Santoro, T. Scopigno, Nature Phys. 6, 503 (2010)ADSCrossRefGoogle Scholar
  18. 18.
    T. Bryk, I. Mryglod, Condens. Matter Phys. 11, 139 (2008)Google Scholar
  19. 19.
    N.H. March, M.P. Tosi, Coulomb Liquids (Academic Press, 1984)Google Scholar
  20. 20.
    T. Bryk, I. Mryglod, Phys. Rev. E 62, 2188 (2000)ADSCrossRefGoogle Scholar
  21. 21.
    T. Bryk, I. Mryglod, Phys. Rev. E 63, 051202 (2001)ADSCrossRefGoogle Scholar
  22. 22.
    A.B. Bhatia, D.E. Thornton, N.H. March, Phys. Chem. Liq. 4, 97 (1974)CrossRefGoogle Scholar
  23. 23.
    T. Bryk, I. Mryglod, J. Phys.: Condens. Matter. 12, 6063 (2000)ADSCrossRefGoogle Scholar
  24. 24.
    T. Bryk, I. Mryglod, J. Phys.: Condens. Matter. 14, L445 (2002)ADSCrossRefGoogle Scholar
  25. 25.
    P.H.K. de Jong, P. Verkerk, C.F. de Vroege, L.A. de Graaf, W.S. Howells, S.M. Bennington, J. Phys.: Condens. Matt. 6, L681 (1994)ADSCrossRefGoogle Scholar
  26. 26.
    J. Bosse, G. Jacucci, M. Ronchetti, W. Schirmacher, Phys. Rev. Lett. 57, 3277 (1986)ADSCrossRefGoogle Scholar
  27. 27.
    A. Campa, E.G.D. Cohen, Phys. Rev. Lett. 61, 853 (1988)ADSCrossRefGoogle Scholar
  28. 28.
    W. Montfrooij, P. Westerhuijs, V.O. de Haan, I.M. de Schepper, Phys. Rev. Lett. 63, 544 (1989)ADSCrossRefGoogle Scholar
  29. 29.
    H.E. Smorenburg, R.M. Crevecoeur, I.M. de Schepper, Phys. Lett. A 211, 118 (1996)ADSCrossRefGoogle Scholar
  30. 30.
    T. Bryk, I. Mryglod, Condens. Matter Phys. 7, 285 (2004)Google Scholar
  31. 31.
    T. Bryk, I. Mryglod, J. Phys.: Condens. Matter. 17, 413 (2005)ADSCrossRefGoogle Scholar
  32. 32.
    T. Bryk, J.-F. Wax, Phys. Rev. B 80, 184206 (2009)ADSCrossRefGoogle Scholar
  33. 33.
    R. Fernandez-Perea, M. Alvarez, F.J. Bermejo, P. Verkerk, B. Roessli, E. Enciso, Phys. Rev. E 58, 4568 (1998)ADSCrossRefGoogle Scholar
  34. 34.
    E. Enciso, N.G. Almarza, P. Dominguez, M.A. Gonzalez, F.J. Bermejo, Phys. Rev. Lett. 74, 4233 (1995)ADSCrossRefGoogle Scholar
  35. 35.
    N.H. March, M.P. Tosi, Ann. Phys. 81, 414 (1973)ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences and Springer 2011

Authors and Affiliations

  1. 1.Institute for Condensed Matter PhysicsNational Academy of Sciences of UkraineLvivUkraine
  2. 2.Institute of Applied Mathematics and Fundamental SciencesNational Polytechnic University of LvivLvivUkraine

Personalised recommendations