Large-scale atomistic simulations of nanostructured materials based on divide-and-conquer density functional theory

  • F. ShimojoEmail author
  • S. Ohmura
  • A. Nakano
  • R. K. Kalia
  • P. Vashishta
Regular Article


A linear-scaling algorithm based on a divide-and-conquer (DC) scheme is designed to perform large-scale molecular-dynamics simulations, in which interatomic forces are computed quantum mechanically in the framework of the density functional theory (DFT). This scheme is applied to the thermite reaction at an Al/Fe2O3 interface. It is found that mass diffusion and reaction rate at the interface are enhanced by a concerted metal-oxygen flip mechanism. Preliminary simulations are carried out for an aluminum particle in water based on the conventional DFT, as a target system for large-scale DC-DFT simulations. A pair of Lewis acid and base sites on the aluminum surface preferentially catalyzes hydrogen production in a low activation-barrier mechanism found in the simulations.


Hydrogen Production European Physical Journal Special Topic Thermite Reaction Molecular Dynamic Step Grotthuss Mechanism 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    K.B. Plantier, M.L. Pantoya, A.E. Gash, Combust. Flame 140, 299 (2005)CrossRefGoogle Scholar
  2. 2.
    B.S. Bockmon, et al., J. Appl. Phys. 98, 064903 (2005)ADSCrossRefGoogle Scholar
  3. 3.
    W.T. Yang, Phys. Rev. Lett. 66, 1438 (1991)ADSCrossRefGoogle Scholar
  4. 4.
    S. Goedecker, Rev. Mod. Phys. 71, 1085 (1999)ADSCrossRefGoogle Scholar
  5. 5.
    D.R. Bowler, et al., J. Phys.: Condens. Matter 20, 290301 (2008)CrossRefGoogle Scholar
  6. 6.
    F. Shimojo, R.K. Kalia, A. Nakano, P. Vashishta, Phys. Rev. B 77, 085103 (2008)ADSCrossRefGoogle Scholar
  7. 7.
    A. Steinfeld, Sol. Energy 78, 603 (2005)CrossRefGoogle Scholar
  8. 8.
    T. Yabe, et al., Appl. Phys. Lett. 89, 261107 (2006)ADSCrossRefGoogle Scholar
  9. 9.
    F. Shimojo, S. Ohmura, A. Nakano, R.K. Kalia, P. Vashishta, Phys. Rev. Lett. 104, 126102 (2010)ADSCrossRefGoogle Scholar
  10. 10.
    J.R. Chelikowsky, N. Troullier, K. Wu, et al., Phys. Rev. B 50, 11355 (1994)ADSCrossRefGoogle Scholar
  11. 11.
    E.L. Briggs, D.J. Sullivan, J. Bernholc, Phys. Rev. B 54, 14362 (1996)ADSCrossRefGoogle Scholar
  12. 12.
    N. Troullier, J.L. Martins, Phys. Rev. B 43, 8861 (1991)ADSCrossRefGoogle Scholar
  13. 13.
    F. Shimojo, et al., Comput. Phys. Commun. 140, 303 (2001)ADSzbMATHCrossRefGoogle Scholar
  14. 14.
    J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996)ADSCrossRefGoogle Scholar
  15. 15.
    F. Shimojo, R.K. Kalia, A. Nakano, P. Vashishta, Phys. Rev. E 77, 066103 (2008)ADSCrossRefGoogle Scholar
  16. 16.
    P.E. Blöchl, Phys. Rev. B 50, 17953 (1994)ADSCrossRefGoogle Scholar
  17. 17.
    P.J. Roach, et al., Science 323, 492 (2009)ADSCrossRefGoogle Scholar
  18. 18.
    G. Henkelman, H. Jonsson, J. Chem. Phys. 113, 9978 (2000)ADSCrossRefGoogle Scholar
  19. 19.
    K.C. Hass, et al., Science 282, 265 (1998)ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences and Springer 2011

Authors and Affiliations

  • F. Shimojo
    • 1
    Email author
  • S. Ohmura
    • 1
  • A. Nakano
    • 2
  • R. K. Kalia
    • 2
  • P. Vashishta
    • 2
  1. 1.Department of PhysicsKumamoto UniversityKumamotoJapan
  2. 2.Collaboratory for Advanced Computing and Simulations, Department of Physics & Astronomy, Department of Computer Science, Department of Materials Science & EngineeringUniversity of Southern CaliforniaLos AngelesUSA

Personalised recommendations