Advertisement

Molecular dynamics characterization of icosahedral short range order in undercooled copper

  • M. CelinoEmail author
Regular Article

Abstract

The stability of undercooled simple metals is still an intriguing problem for materials science and technology. There is not consensus on the role played by the icosahedral short range order during undercooling. The scenario is even less clear for undercooled metals under external pressure. Extensive molecular dynamics simulations, based on an empirical tight-binding interatomic potential, are performed to explain experimental results recently obtained on liquid and undercooled liquid copper. A common neighbour analysis is used to fully characterize the icosahedral short range order in both undercooled and liquid systems. Moreover, the effect of pressure on icosahedral short range order, is addressed and rationalized. External pressure increases the probability to find atomic bonds with icosahedral symmetry both in the liquid and in the undercooled copper.

Keywords

European Physical Journal Special Topic Radial Distribution Function Liquid Copper Amorphous Metal Icosahedral Symmetry 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    D. Turnbull, J. Chem. Phys. 20, 411 (1952)ADSCrossRefGoogle Scholar
  2. 2.
    F.C. Frank, Proc. R. Soc. London A 215, 43 (1952)ADSCrossRefGoogle Scholar
  3. 3.
    F. Spaepen, Nature 408, 781 (2000)ADSCrossRefGoogle Scholar
  4. 4.
    T. Schenk, D. Holland-Moritz, V. Simonet, R. Bellissent, D.M. Herlach, Phys. Rev. Lett. 89, 075507 (2002)ADSCrossRefGoogle Scholar
  5. 5.
    G.W. Lee, A.K. Gangopadhyay, K.F. Kelton, R.W. Hyers, T.J. Rathz, J.R. Rogers, D.S. Robinson, Phys. Rev. Lett. 93, 037802 (2004)ADSCrossRefGoogle Scholar
  6. 6.
    A. Di Cicco, A. Trapananti, S. Faggioni, A. Filipponi, Phys. Rev. Lett. 91, 135505 (2003)ADSCrossRefGoogle Scholar
  7. 7.
    W.K. Luo, H.W. Sheng, F.M. Alamgir, J.M. Bai, J.H. He, E. Ma, Phys. Rev. Lett. 92, 145502 (2004)ADSCrossRefGoogle Scholar
  8. 8.
    K.F. Kelton, G.W. Lee, A.K. Gangopadhyay, R.W. Hyers, T.J. Rathz, J.R. Rogers, M.B. Robinson, D.S. Robinson, Phys. Rev. Lett. 90, 195504 (2003)ADSCrossRefGoogle Scholar
  9. 9.
    N. Jakse, O. Le Bacq, A. Pasturel, J. Non-Cryst. Sol. 353, 3684 (2007)ADSCrossRefGoogle Scholar
  10. 10.
    P. Ganesh, M. Widom, Phys. Rev. B 74, 134205 (2006)ADSCrossRefGoogle Scholar
  11. 11.
    F. Coppari, A. Di Cicco, A. Filipponi, A. Trapananti, G. Aquilanti, S. De Panfilis, J. Physics 121, 042009 (2008)CrossRefGoogle Scholar
  12. 12.
    M. Celino, F. Coppari, A. Di Cicco, Sol. St. Sc. 12, 179 (2010)CrossRefGoogle Scholar
  13. 13.
    F. Cleri, V. Rosato, Phys. Rev. B 48, 22 (1993)ADSCrossRefGoogle Scholar
  14. 14.
    M. Celino, V. Rosato, A. Di Cicco, A. Trapananti, C. Massobrio, Phys. Rev. B 75, 174210 (2007)ADSCrossRefGoogle Scholar
  15. 15.
    L. Hui, F. Pederiva, Chem. Phys. 304, 261 (2004)ADSCrossRefGoogle Scholar
  16. 16.
    H. Pang, Z.H. Jin, K. Lu, Phys. Rev. B 67, 094113 (2003)ADSCrossRefGoogle Scholar
  17. 17.
    N. Jakse, A. Pasturel, Phys. Rev. Lett. 91, 195501 (2003)ADSCrossRefGoogle Scholar
  18. 18.
    A. Pasquarello, K. Laasonen, R. Car, C. Lee, D. Vanderbilt, Phys. Rev. Lett. 69, 1982 (1992)ADSCrossRefGoogle Scholar
  19. 19.
    C. Kuiying, L. Hongbo, L. Xiaoping, H. Qiyong, H. Zhuangqi, J. Phys.: Condens. Matter 7, 2379 (1995)ADSCrossRefGoogle Scholar
  20. 20.
    J.C. González, V. Rodrigues, J. Bettini, L.G.C. Rego, A.R. Rocha, P.Z. Coura, S.O. Dantas, F. Sato, D.S. Galvao, D. Ugarte, Phys. Rev. Lett. 93, 126103 (2004)ADSCrossRefGoogle Scholar
  21. 21.
    P. Geysermans, M. Mareschal, V. Pontikis, Mol. Phys. 95, 465 (1998)ADSCrossRefGoogle Scholar
  22. 22.
    N. Jakse, A. Pasturel, J. Chem. Phys. 123, 244512 (2005)ADSCrossRefGoogle Scholar
  23. 23.
    M. Parrinello, A. Rahman, J. Appl. Phys. 52, 289 (1981)CrossRefGoogle Scholar
  24. 24.
    S. Nosé, Mol. Phys. 52, 255 (1984)ADSCrossRefGoogle Scholar
  25. 25.
    S. Nosé, J. Chem. Phys. 81, 511 (1984)ADSCrossRefGoogle Scholar
  26. 26.
    M.P. Allen, D.J. Tildesley, Computer Simulation of Liquids (Clarendon Press, Oxford, 1987)Google Scholar
  27. 27.
    Y. Waseda, The Structure of Non-Crystalline Materials (McGraw-Hill, New York, 1980)Google Scholar
  28. 28.
    J.D. Honeycutt, H.C. Andersen, J. Chem. Phys. 91, 4950 (1987)CrossRefGoogle Scholar
  29. 29.
    A.S. Clarke, H. Jónsson, Phys. Rev. E 47, 3975 (1993)ADSCrossRefGoogle Scholar
  30. 30.
    J. Mei, J.W. Davenport, Phys. Rev. B 42, 9682 (1990)ADSCrossRefGoogle Scholar
  31. 31.
    N. Jakse, A. Pasturel, J. Chem. Phys. 120, 6124 (2004)ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences and Springer 2011

Authors and Affiliations

  1. 1.ENEA, C. R. CasacciaRomeItaly

Personalised recommendations