Advertisement

Expanded fluid mercury in the metal-nonmetal transition range. An ab-initio MD study

  • L. Calderin
  • L. E. González
  • D. J. González
Regular Article

Abstract

Fluid Hg undergoes a metal-nonmetal (M-NM) transition when is expanded from the triple point towards a density of around 9 gr/cm3 at high temperature and high pressure. To investigate the related changes in the static and dynamic properties, we have performed ab-initio molecular dynamics simulations for some states close to the M-NM transition range. The calculated static and dynamic structure factors show a good agreement with the available experimental data. It is found that the volume expansion reduces the number of nearest neighbors at the expense of the inner ones. The dispersion relation exhibits a positive dispersion which is not so marked as that deduced from experimental data. The total electronic density of states shows the appearance of a band gap at a density somewhat smaller than 9 gr/cm3.

Keywords

European Physical Journal Special Topic Triple Point Dynamic Structure Factor Side Peak Static Structure Factor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    F. Hensel, W.W. Warren, Fluid Metals (Princeton University Press, Princeton, 1999)Google Scholar
  2. 2.
    K. Tamura, S. Hosokawa, Phys. Rev. B 58, 9030 (1998)ADSCrossRefGoogle Scholar
  3. 3.
    X. Hong, M. Inui, T. Matsusaka, D. Ishikawa, M.H. Kazi, K. Tamura, J. Non-Cryst. Solids, 312–314, 284 (2002)CrossRefGoogle Scholar
  4. 4.
    M. Inui, X. Hong, K. Tamura, Phys. Rev. B 68, 094108 (2003)ADSCrossRefGoogle Scholar
  5. 5.
    D. Ishikawa, M. Inui, K. Matsuda, K. Tamura, S. Tsutsui, A.Q.R. Baron, Phys. Rev. Lett. 93, 097801 (2004)ADSCrossRefGoogle Scholar
  6. 6.
    M. Inui, D. Ishikawa, K. Matsuda, K. Tamura, S. Tsutsui, A.Q.R. Baron, J. Phys. Chem. Solids 66, 2223 (2005)ADSCrossRefGoogle Scholar
  7. 7.
    D. Ishikawa, M. Inui, K. Matsuda, K. Tamura, A.Q.R. Baron, S. Tsutsui, Y. Tanaka, T. Ishikawa, J. Phys.: Condens. Matter 16, L45 (2004)ADSCrossRefGoogle Scholar
  8. 8.
    G. Kresse, J. Hafner, Phys. Rev. B 55, 7539 (1997)ADSCrossRefGoogle Scholar
  9. 9.
    S. Munejiri, F. Shimojo, K. Hoshino, J. Phys.: Condens. Matter 10, 4963 (1998)ADSCrossRefGoogle Scholar
  10. 10.
    K. Hoshino, S. Tanaka, F. Shimojo, J. Non-Cryst. Solids 353, 3389 (2007)ADSCrossRefGoogle Scholar
  11. 11.
    D.M. Ceperly, B.J. Alder, Phys. Rev. Letters 45, 566 (1980)ADSCrossRefGoogle Scholar
  12. 12.
    J.P. Perdew, A. Zunger, Phys. Rev. B 23, 5048 (1981)ADSCrossRefGoogle Scholar
  13. 13.
    L.E. González, D.J. González, L. Calderin, S. Sengul, J. Chem. Phys. 129, 171103 (2008)ADSCrossRefGoogle Scholar
  14. 14.
    L. Calderin, L.E. González, D.J. González, J. Chem. Phys. 130, 194505 (2009)ADSCrossRefGoogle Scholar
  15. 15.
    R.L. McGreevy, A. Baranyai, I. Ruff, Phys. Chem. Liq. 16, 47 (1986)CrossRefGoogle Scholar
  16. 16.
    U. Balucani, M. Zoppi, Dynamics of the Liquid State (Clarendon, Oxford, 1994)Google Scholar
  17. 17.
    B. Fak, B. Dorner, Institut Laue-Langevin Report, 92FA008S (1992)Google Scholar
  18. 18.
    U. Bafile, E. Guarini, F. Barocchi, Phys. Rev. E 73, 061023 (2006)CrossRefGoogle Scholar
  19. 19.
    H. Kohno, M. Yao, J. Phys.: Cond. Matter, 11, 5399 (1999)ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences and Springer 2011

Authors and Affiliations

  • L. Calderin
    • 1
  • L. E. González
    • 2
  • D. J. González
    • 2
  1. 1.Department of PhysicsQueen’s UniversityKingstonCanada
  2. 2.Departamento de Fisica Teórica, Facultad de CienciasUniversidad de ValladolidValladolidSpain

Personalised recommendations