Advertisement

Orbital free ab initio simulation of surface freezing in a dilute Ga-Tl alloy

  • L. E. GonzálezEmail author
  • D. J. González
Regular Article
  • 54 Downloads

Abstract

We have used the orbital-free ab initio molecular dynamics method to study the phenomenon of surface freezing in a liquid Ga-Tl alloy (nominal Tl concentration of 0.14). Several thermodynamic states are considered from a high temperature of 675 K to a low temperature of 350 K. At the higher temperature the Tl atoms segregate to the surface and form a liquid layer. Upon cooling the layer eventually crystallizes into a close-packed hexagonal solid layer. These results agree with experiments for a dilute liquid alloy of Tl in Ga, except for some overestimation of the surface freezing temperature. X-ray reflectivity data are also well reproduced. The wavelength of the oscillatory density profile coincides with that deduced from experiments and with that obtained in earlier computer simulation results. We also analyze the consequences of surface freezing on the structure of the liquid in contact with the solid layer, finding no influence whatsoever, as the structure basically coincides with the bulk liquid one.

Keywords

European Physical Journal Special Topic Capillary Wave Amorphous Metal Transverse Structure Monotectic Reaction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    J.W.M. Frenken, J.F. van der Veen, Phys. Rev. Lett. 54, 134 (1985)ADSCrossRefGoogle Scholar
  2. 2.
    Q.S. Mei, K. Lu, Prog. Mater. Sci. 52, 1175 (2007)CrossRefGoogle Scholar
  3. 3.
    M.P. D’Evelyn, S.A. Rice, Phys. Rev. Lett. 47, 1844 (1981)ADSCrossRefGoogle Scholar
  4. 4.
    O.M. Magnussen, B.M. Ocko, M.J. Regan, K. Pennanen, P.S. Pershan, M. Deutsch, Phys. Rev. Lett. 74, 4444 (1995)ADSCrossRefGoogle Scholar
  5. 5.
    D.J. González, L.E. González, M.J. Stott, Phys. Rev. B 74, 224201 (2006)CrossRefGoogle Scholar
  6. 6.
    X.Z. Wu, E.B. Sirota, K. Sinha, B.M. Ocko, M. Deutsch, Phys. Rev. Lett. 70, 958 (1993)ADSCrossRefGoogle Scholar
  7. 7.
    Z. Dogic, Phys. Rev. Lett. 91, 165701 (2003)ADSCrossRefGoogle Scholar
  8. 8.
    A. Grigoriev, O. Shpyrko, C. Steimer, P.S. Pershan, B.M. Ocko, M. Deutsch, B. Lin, M. Meron, T. Graber, J. Gebhardt, Surf. Sci. 575, 223 (2005)ADSCrossRefGoogle Scholar
  9. 9.
    B. Yang, D. Li, Z. Huang, S.A. Rice, Phys. Rev. B 62, 13111 (2000)ADSCrossRefGoogle Scholar
  10. 10.
    D. Li, B. Yang, S.A. Rice, Phys. Rev. B 65, 224202 (2002)ADSCrossRefGoogle Scholar
  11. 11.
    B. Yang, D. Li, S.A. Rice, Phys. Rev. B 67, 212103 (2003)ADSCrossRefGoogle Scholar
  12. 12.
    O.G. Shpyrko, R. Streitel, V.S.K. Balagurusamy, A.Y. Grigoriev, M. Deutsch, B.M. Ocko, M. Meron, B. Lin, P.S. Pershan, Science 313, 77 (2006)ADSCrossRefGoogle Scholar
  13. 13.
    O.G. Shpyrko, R. Streitel, V.S.K. Balagurusamy, A.Y. Grigoriev, M. Deutsch, B.M. Ocko, M. Meron, B. Lin, P.S. Pershan, Phys. Rev. B 76, 245436 (2007)ADSCrossRefGoogle Scholar
  14. 14.
    J.W. Cahn, J. Chem. Phys. 66, 3667 (1977)ADSCrossRefGoogle Scholar
  15. 15.
    D. Nattland, P.D. Poh, S.C. Müller, W. Freyland, J. Phys.: Condens. Matter 7, 457 (1995)ADSCrossRefGoogle Scholar
  16. 16.
    D. Chatain, P. Wynblatt, Surf. Sci. 345, 85 (1996)ADSCrossRefGoogle Scholar
  17. 17.
    H. Shim, P. Wynblatt, D. Chatain, Surf. Sci. 476, L273 (2001)CrossRefGoogle Scholar
  18. 18.
    A. Turchanin, D. Nattland, W. Freyland, Chem. Phys. Lett. 337, 5 (2001)ADSCrossRefGoogle Scholar
  19. 19.
    A. Turchanin, W. Freyland, D. Nattland, Phys. Chem. Chem. Phys. 4, 647 (2002)CrossRefGoogle Scholar
  20. 20.
    W. Freyland, A.H. Ayyad, I. Mechdiev, J. Phys.: Condens. Matter 15, S151 (2003)ADSCrossRefGoogle Scholar
  21. 21.
    A. Issanin, A. Turchanin, W. Freyland, J. Chem. Phys. 121, 12005 (2004)ADSCrossRefGoogle Scholar
  22. 22.
    E.B. Flom, M. Li, A. Acero, N. Maskil, S.A. Rice, Science 260, 332 (1993)ADSCrossRefGoogle Scholar
  23. 23.
    N. Lei, Z. Huang, S.A. Rice, J. Chem. Phys. 104, 4802 (1996)ADSCrossRefGoogle Scholar
  24. 24.
    B. Predel, Z. Metallkd. 50, 663 (1959)Google Scholar
  25. 25.
    T.B. Massalski (ed.), Binary Alloy Phase Diagrams, vol. 3, 2nd edition (ASM International, 1990)Google Scholar
  26. 26.
    Th. Halm, J. Nomssi Nzali, W. Hoyer, R.P. May, J. Non-Crystalline Solids, 250–252, 293 (1999)CrossRefGoogle Scholar
  27. 27.
    Th. Halm, J. Nomssi Nzali, W. Hoyer, R.P. May, M. Bionducci, J. Non-Crystalline Solids, 293–295, 182 (2001)CrossRefGoogle Scholar
  28. 28.
    K. Bartel, W. Freyland, D. Nattland, Phys. Stat. Sol. C 5, 1172 (2008)CrossRefGoogle Scholar
  29. 29.
    D. Li, X. Jiang, B. Lin, M. Meron, S.A. Rice, Phys. Rev. B 72, 235426 (2005)ADSCrossRefGoogle Scholar
  30. 30.
    C. Mekler, G. Kaptay, Mater. Sci. and Engin. A 495, 65 (2008)CrossRefGoogle Scholar
  31. 31.
    X. Jiang, M. Zhao, S.A. Rice, Phys. Rev. B 71, 104203 (2005)ADSCrossRefGoogle Scholar
  32. 32.
    P. Hohenberg, W. Kohn, Phys. Rev. 136, B864 (1964)MathSciNetADSCrossRefGoogle Scholar
  33. 33.
    J.P. Perdue, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996)ADSCrossRefGoogle Scholar
  34. 34.
    D.J. González, L.E. González, J.M. López, M.J. Stott, Phys. Rev. B 65, 184201 (2002)ADSCrossRefGoogle Scholar
  35. 35.
    F. Perrot, J. Phys: Condens. Matter 6, 431 (1994)ADSCrossRefGoogle Scholar
  36. 36.
    E. Smargiassi, P.A. Madden, Phys. Rev. B 49, 5220 (1994)ADSCrossRefGoogle Scholar
  37. 37.
    M. Foley, P.A. Madden, Phys. Rev. B 53, 10589 (1996)ADSCrossRefGoogle Scholar
  38. 38.
    D.J. González, L.E. González, J. Chem. Phys. 130, 114703 (2009)ADSCrossRefGoogle Scholar
  39. 39.
    L.E. González, D.J. González, M.J. Stott, Phys. Rev. B 77, 014207 (2008)ADSCrossRefGoogle Scholar
  40. 40.
    L.E. González, D.J. González, Phys. Rev. B 77, 064202 (2008)ADSCrossRefGoogle Scholar
  41. 41.
    D.J. González, L.E. González, J. Phys.: Condens. Matter 20, 114118 (2008)ADSCrossRefGoogle Scholar
  42. 42.
    Y. Waseda, The Structure of Non-Crystalline Materials (McGraw-Hill, New York, 1980), http://res.tagen.tohoku.ac.jp/ waseda/scm/LIQ/periodic_table.htmlGoogle Scholar
  43. 43.
    E.A. Guggenheim, Trans. Faraday Soc. 41, 150 (1945)CrossRefGoogle Scholar
  44. 44.
    T. Iida, R.I.L. Guthrie, Physical Properties of Liquid Metals, (Clarendon Press, Oxford, 1988)Google Scholar
  45. 45.
    A. Jaster, Phys. Lett. A 330, 120 (2004)ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences and Springer 2011

Authors and Affiliations

  1. 1.Departamento de Física TeóricaUniversidad de ValladolidValladolidSpain

Personalised recommendations