Advertisement

Theory of collective excitations in simple liquids

  • W. Schirmacher
  • B. Schmid
  • H. Sinn
Review

Abstract

We present a parameter-free theory of the collective excitations in simple liquids such as liquid metals or rare gases. The theory is based on the mode-coupling theory (MCT), which has been previously applied successfully for explaining the liquid-to glass transition. The only input is the liquid structure factor. We achieve good agreement both for the liquid dispersion (maximum of the longitudinal current spectrum) and width (damping) with experimental findings. The time-dependent memory function predicted by MCT has a two-step exponential decay as previously found in computer simulations. Furthermore MCT predicts a scaling of the liquid dispersion with the effective hard-sphere diameter of the materials. This scaling is obeyed by the available experimental data.

Keywords

Liquid Metal European Physical Journal Special Topic Memory Function Hard Sphere Packing Fraction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S. Chapman, T. Cowling, The Mathematical Theory of Non-Uniform Gases (Cambridge Univ. Press, Cambridge, 1952)Google Scholar
  2. 2.
    J.R.D. Copley, S. Lovesey, Rep. Prog. Phys. 38, 461 (1975)ADSCrossRefGoogle Scholar
  3. 3.
    J.P. Boon, S. Yip, Molecular Hydrodynamics (McGraw Hill, New York, 1980)Google Scholar
  4. 4.
    J.P. Hansen, I.R. McDonald, Theory of Simple Liquids (Academic Press, Amsterdam, 1986)Google Scholar
  5. 5.
    P.A. Egelstaff, An Introduction to the Liquid State (Clarendon Press, Oxford, 1994)Google Scholar
  6. 6.
    T. Scopigno, G. Ruocco, F. Sette, Rev. Mod. Phys. 77, 881 (2005)ADSCrossRefGoogle Scholar
  7. 7.
    D. Forster, Hydrodynmics, Broken Symmetry and Correlation Func (Benjamin, Reading, Mass, 1975)Google Scholar
  8. 8.
    P. Protopapas, H.C. Anderson, N.A.D. Parl, J. Chem. Phys. 49, 15 (1973)ADSCrossRefGoogle Scholar
  9. 9.
    W. Götze, M. Lücke, Phys. Rev. A 13, 3822 (1976)Google Scholar
  10. 10.
    W. Götze, M. Lücke, Phys. Rev. A 13, 3825 (1976)Google Scholar
  11. 11.
    W. Götze, M. Lücke, Phys. Rev. A 11, 2173 (1976)CrossRefGoogle Scholar
  12. 12.
    J.B.W. Götze, M. Lücke, Phys. Rev. A 17, 434 (1978)MathSciNetADSCrossRefGoogle Scholar
  13. 13.
    J. Bosse, W. Götze, M. Lücke, Phys. Rev. A 17, 447 (1978)ADSCrossRefGoogle Scholar
  14. 14.
    J. Bosse, W. Götze, M. Lücke, Phys. Rev. A 18, 1176 (1978)ADSCrossRefGoogle Scholar
  15. 15.
    U. Bengtzelius, W. Götze, A. Sjölander, J. Phys. C 17, 5915 (1984)ADSCrossRefGoogle Scholar
  16. 16.
    E. Leutheusser, Phys. Rev. A 29, 2765 (1984)ADSCrossRefGoogle Scholar
  17. 17.
    W. PGötze, in Liquids, Freezing and the Glass transition, edited by J.P. Hansen, D. Levesque, J. Zinn-Justin (North-Holland, Amsterdam, 1991)Google Scholar
  18. 18.
    W. Götze, Complex Dynamics of Glass-Forming Liquids (Oxford University Press, Oxford, 2010)Google Scholar
  19. 19.
    W. Götze, L. Sjögren, Rep. Progr. Phys. 55, 241 (1992)CrossRefGoogle Scholar
  20. 20.
    W. Schirmacher, H. Sinn, Cond. Matter Phys. 11, 127 (2008)Google Scholar
  21. 21.
    M.S. Wertheim, Phys. Rev. Lett. 1, 321 (1963)MathSciNetADSCrossRefGoogle Scholar
  22. 22.
    E. Thiele, J. Chem. Phys. 39, 474 (1963)ADSCrossRefGoogle Scholar
  23. 23.
    L.V.D. Levesque, J. Kurkijärvi, Phys. Rev. A 7, 1690 (1973)ADSCrossRefGoogle Scholar
  24. 24.
    T. Scopigno, U. Balucani, G. Ruocco, F.S., Phys. Rev. Lett. 85, 4076 (2000)ADSCrossRefGoogle Scholar
  25. 25.
    T. Scopigno, U. Balucani, G. Ruocco, F.S., Phys. Rev. E 64, 011210 (2001)ADSGoogle Scholar
  26. 26.
    T. Scopigno, G. Ruocco, F. Sette, G. Vili, Phys. Rev. E 66, 031205 (2002)ADSCrossRefGoogle Scholar
  27. 27.
    T. Scopigno, L.C.R. Di Leonardo, A.Q.R. Baron, D. Fioretto, G. Ruocco, Phys. Rev. Lett. 94, 155301 (2005)ADSCrossRefGoogle Scholar
  28. 28.
    A.H. Said, H. Sinn, A. Alatas, C.A. Burns, D.L. Price, M.L. Saboungi, W. Schirmacher, Phys. Rev. B 74, 172202 (2006)ADSCrossRefGoogle Scholar
  29. 29.
    H. Reichert, F. Bencivenga, B. Wehinger, M. Krisch, F. Sette, H. Dosch, Phys. Rev. Lett. 98, 096104 (2007)ADSCrossRefGoogle Scholar
  30. 30.
    L. Verlet, Phys. Rev. 165, 201 (1968)ADSCrossRefGoogle Scholar
  31. 31.
    A. Rahman, Neutron Inelastic Scattering (Int. Atomic Energy Agency, Vienna, 1968)Google Scholar

Copyright information

© EDP Sciences and Springer 2011

Authors and Affiliations

  • W. Schirmacher
    • 1
    • 2
  • B. Schmid
    • 1
  • H. Sinn
    • 3
  1. 1.Institut für PhysikJohannes Gutenberg-Universität MainzMainzGermany
  2. 2.Physik-Department E13Technische Universität MünchenGarchingGermany
  3. 3.European XFEL/DESYHamburgGermany

Personalised recommendations