From social data mining to forecasting socio-economic crises

  • D. HelbingEmail author
  • S. Balietti


The purpose of this White Paper of the EU Support Action “Visioneer”(see is to address the following goals:
  1. 1.

    Develop strategies to quickly increase the objective knowledge about social and economic systems.

  2. 2.

    Describe requirements for efficient large-scale scientific data mining of anonymized social and economic data.

  3. 3.

    Formulate strategies how to collect stylized facts extracted from large data set.

  4. 4.

    Sketch ways how to successfully build up centers for computational social science.

  5. 5.

    Propose plans how to create centers for risk analysis and crisis forecasting.

  6. 6.

    Elaborate ethical standards regarding the storage, processing, evaluation, and publication of social and economic data.



Recommender System European Physical Journal Special Topic Reality Mining Computational Social Science Electronic Frontier Foundation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Visioneer, envisioning a socio-economic knowledge collider, http://www.visioneer. ethz.chGoogle Scholar
  2. 2.
    D. Helbing, S. Balietti, From Social Simulation to Integrative System Design. Eur. Phys. J. Special Topics 195, 69 (2011), see http://www.visioneer.ethz.chCrossRefADSGoogle Scholar
  3. 3.
    D. Helbing, S. Balietti, How to create an Innovation Accelerator. Eur. Phys. J. Special Topics 195, 101 (2011), see http://www.visioneer.ethz.chCrossRefADSGoogle Scholar
  4. 4.
    D. Helbing, S. Balietti, Formulating grand fundamental challenges. Visioneer White Paper (2010), see http://www.visioneer.ethz.chGoogle Scholar
  5. 5.
    D. Helbing, Pluralistic Modeling of Complex Systems (July 18, 2010). CCSS-10-009, available at SSRN: Scholar
  6. 6.
    D. Helbing, S. Balietti, Fundamental and real world challenges in economics (in print) (2010)Google Scholar
  7. 7.
    D. Helbing, Systemic risks in society and economics, Sante Fe Institute, working paper (2009)Google Scholar
  8. 8.
    S.V. Buldyrev, R. Parshani, G. Paul, H.E. Stanley, S. Havlin, Nature 465, 08932 (2010)Google Scholar
  9. 9.
    D. Helbing, W. Yu, K.-D. Opp, H. Rauhut, Amer. J. Sociol. (submitted) (2010Google Scholar
  10. 10.
    See Scholar
  11. 11.
    K.P. Smith, N.A. Christakis, Ann. Rev. Sociol. 34, 405 (2008)CrossRefGoogle Scholar
  12. 12.
    Privatsphäre als Luxusgut, privatsphaere_als_luxusgut_1.7266824.htmlGoogle Scholar
  13. 13.
    D. Helbing, M. Christen, Mit Rauschen und Reibung gegen finanzielle Blasen (submitted to Wirtschaftswoche) (2010)Google Scholar
  14. 14.
    M. Mäs, A. Flache, D. Helbing, PLoS Computational Biology (in print) (2010)Google Scholar
  15. 15.
    The Future of Social Experimenting: The Full Story, research/socialexperimentingGoogle Scholar
  16. 16.
    J. Surowiecki, The wisdom of crowds: Why the many are smarter than the few and how collective wisdom shapes business, economics, societies, and nations (Random House, Inc., 2004)Google Scholar
  17. 17.
    J.H. Kagel, A.E. Roth, The Handbook of Experimental Economics (Princeton University, 1997)Google Scholar
  18. 18.
    M.J. Salganik, P.S. Dodds, D.J. Watts, Science 311, 854 (2006)ADSCrossRefGoogle Scholar
  19. 19.
    W.S. Bainbridge, Science 317, 472 (2007)ADSCrossRefGoogle Scholar
  20. 20.
    N.F. Johnson, C. Xu, Z. Zhao, N. Ducheneaut, N. Yee, G. Tita, P.M. Hui, Phys. Rev. E 79, 066117 (2009)ADSCrossRefGoogle Scholar
  21. 21.
    M. Szell, S. Thurner, Social Networks (2009) (submitted) [E-print abs/0911.1084]Google Scholar
  22. 22.
    N.A. Christakis, J.H. Fowler, New Engl. J. Med. 357, 370 (2007)CrossRefGoogle Scholar
  23. 23.
    N.A. Christakis, J.H. Fowler, New Engl. J. Med. 358, 2249 (2008)CrossRefGoogle Scholar
  24. 24.
    J.H. Fowler, N.A. Christakis, British Med. J. 337, a2338 (2008)CrossRefGoogle Scholar
  25. 25.
    J.H. Fowler, N.A. Christakis, Cooperative behavior cascades in human social networks (2009) [E-print]Google Scholar
  26. 26.
    J. Howe, Wired Mag. 14, (2006)Google Scholar
  27. 27.
    J. Howe, Crown Busin. (2009)Google Scholar
  28. 28.
    D. Tapscott, A.D. Williams, Portfolio Hardcover (2008)Google Scholar
  29. 29.
    C.R. Sunstein, Infotopia: How Many Minds Produce Knowledge (Oxford University Press, USA, 2006)Google Scholar
  30. 30.
    M. Abramowicz, Predictocracy: Market Mechanisms for Public and Private Decision Making (Yale University Press, 2009)Google Scholar
  31. 31.
    Designing E-Business Systems. Markets, Services, and Networks. 7th Workshop on E-Business, WEB 2008, edited by C. Weinhardt, S. Luckner, J. Stösser (Paris, France, 2008)Google Scholar
  32. 32.
    R. Kalakota, M. Robinson, E-business 2.0: Roadmap for Success (Addison-Wesley Longman Publishing Co., Inc. Boston, MA, USA, 2001)Google Scholar
  33. 33.
    C.S.R. Prabhu, E-governance: Concepts and Case Studies (PHI Learning, 2006)Google Scholar
  34. 34.
    Electronic Government: 8th International Conference, EGOV 2009, edited by M.A. Wimmer, H.J. Scholl, M. Janssen, R. Traunmller (Linz, Austria, 31 August—3 September, 2009)Google Scholar
  35. 35.
    G.E. Moore, Electronics Magazine 4 (1965), Moores_Law/Articles-Press_Releases/Gordon_Moore_1965_Article.pdfGoogle Scholar
  36. 36.
    I. Fisher, The Theory of Interest (NY, Macmillan, 1930)Google Scholar
  37. 37.
    B.B. Mandelbrot, J. Busin. 36, 394 (1963)Google Scholar
  38. 38.
    E.F. Fama, J. Busin. 38, 34 (1965)CrossRefGoogle Scholar
  39. 39.
    R.K. Merton, Science 159, 56 (1968)ADSCrossRefGoogle Scholar
  40. 40.
    A. Barabasi, Science 286, 509 (1999)MathSciNetCrossRefGoogle Scholar
  41. 41.
    R. Dunbar, Grooming, Gossip, and the Evolution of Language (Harvard University Press, 1998)Google Scholar
  42. 42.
    V. Pareto, Translation of Manuale di economia politica (“Manual of political economy”), A.M. Kelley (1971)Google Scholar
  43. 43.
    G.K. Zipf, Human Behavior and the Principle of Least-Effort (Addison-Wesley, 1949)Google Scholar
  44. 44.
    E. Ravenstein, The Geographical Magazine III, 173, 201, 229 (1876)Google Scholar
  45. 45.
    G.K. Zipf, Amer. Sociol. Rev. 11, 677 (1946)CrossRefGoogle Scholar
  46. 46.
    J. Tinbergen, Shaping the World Economy: Suggestions for an International Economic policy, Twentieth Century Fund (1962)Google Scholar
  47. 47.
    C.A.E. Goodhart, Papers in Monetary Economics (Reserve Bank of Australia) (1975)Google Scholar
  48. 48.
    K.A. Chrystal, P.D. Mizen, Vol. 1 of Central Banking, Monetary Theory and Practice: Essays in Honour of Charles Goodhart, edited by P.D. Mizen (Northampton, MA, Edward Elgar, 2003)Google Scholar
  49. 49.
    J. Danãelsson, J. Banking Finance 26, 127396 (2002)Google Scholar
  50. 50.
    Ioannidis P.A. , John, PLos Med. 2, 8 (2005)CrossRefGoogle Scholar
  51. 51.
    D. Lazer, et al., Science 323, 721 (2009)CrossRefGoogle Scholar
  52. 52.
    Recommendations of the Association of Internet Researchers (AoIR) Ethics Working Committee, Scholar
  53. 53.
    Research Methods in the Social Sciences, edited by C. Frankfort-Nachmias, D. Nachmias (Worth Publishers, New York, 2008)Google Scholar
  54. 54.
    L.C. Bollinger, Announcing the Columbia committee on global thought, http://www. Scholar
  55. 55.
    H. Spencer, The Principles of Sociology (Appleton, New York, 1898; the three volumes were originally published in serial form between 1874 and 1896)Google Scholar
  56. 56.
    L. von Bertalanffy, General System Theory: Foundations, Development, Applications (George Braziller, New York, 1968)Google Scholar
  57. 57.
    J.M. Epstein, Generative Social Science. Studies in Agent-Based Computational Modeling (Princeton University, 2006), p. 51Google Scholar
  58. 58.
    J. Lorenz, H. Rauhut, F. Schweitzer D. Helbing, How social influence undermines the wisdom of crowds (submitted) (2010)Google Scholar
  59. 59.
    L. Molgedey, W. Ebeling, Eur. Phys. J. B-Cond. Matter Complex Syst. 15, 733737 (2000)Google Scholar
  60. 60.
    G. Sugihara, R.M. May, Nature 344, 734741 (1990)CrossRefGoogle Scholar
  61. 61.
    D. Helbing, et al., Human Behaviour and Traffic Networks, edited by M. Schreckenberg, R. Selten (Springer, Berlin, 2004), p. 47Google Scholar
  62. 62.
    N. Bardsley, R. Cubitt, G. Loomes, G.P. Moffatt, R. Sugden, Experimental Economics: Rethinking the Rule (Princeton University Press, 2009)Google Scholar
  63. 63.
    D. Friedman, Cassar A., Economics Lab: An Intensive Course in Experimental Economics (Routledge, 2004)Google Scholar
  64. 64.
    D. Friedman, S. Sunder, Experimental Methods: A Primer for Economists (Cambridge University Press, 1994)Google Scholar
  65. 65.
    F. Guala, The Methodology of Experimental Economics (Cambridge University Press, 2005)Google Scholar
  66. 66.
    S. Lämmer, D. Helbing, JSTAT P04019 (2008)Google Scholar
  67. 67.
    M. Scheffer, J. Bascompte, W.A. Brock, V. Brovkin, S.R. Carpenter, V. Dakos, H. Held, E.H. van Nes, M Rietkerk, Nature 461, 53 (2009)ADSCrossRefGoogle Scholar
  68. 68.
    D. Helbing, S. Lämmer, D. Armbruster, A.S. Mikhailov, K. Kaneko, Networks of Interacting Machines: Production Organization in Complex Industrial Systems and Biological Cells, edited by D. Armbruster, A.S. Mikhailov, K. Kaneko (World Scientific, Singapore, 2005), p. 33Google Scholar
  69. 69.
    D. Helbing, H. Ammoser, C. Khnert, Extreme Events in Nature and Society, edited by S. Albeverio, V. Jentsch, H. Kantz (Springer, Berlin, 2005)Google Scholar
  70. 70.
    Google chief: Only miscreants worry about net privacy, http://www.theregister. Scholar
  71. 71.
    Details of 100 m Facebook users collected and published, news/technology-10796584Google Scholar
  72. 72.
    L. Odling-Smee, Nature 446, 10 (2007)ADSCrossRefGoogle Scholar
  73. 73.
    The Data Deluge, The Economist, Feb 25th 2010, 15579717Google Scholar
  74. 74.
    Information is Power, The Guardian Data Blog, 2010/may/24/data-journalismGoogle Scholar
  75. 75.
    Building Big Society, society.pdfGoogle Scholar
  76. 76.
    Apple confirms $1bn data center, apple_1bn_north_carolina_data_center/Google Scholar
  77. 77.
    NSA plans massive, 65MW, $2bn data center in Utah, http://www.theregister. Scholar
  78. 78.
    Microsoft consumes Chicago data center, 20/ascent_ch2_datacenter/Google Scholar
  79. 79.
    Google admits Scandinavian data center landing, http://www.theregister. Scholar
  80. 80.
    Google pays $51.7m for newspaper destruction metaphor, http://www.theregister. Scholar
  81. 81.
    Intel sees future in Mega Data Center, the_intel_cloud/Google Scholar
  82. 82.
    R. Axelrod, The Evolution of Cooperation (Basic Books, 1984), p. 169Google Scholar
  83. 83.
    A. Leventhal, ACM Queue 7 (2009)Google Scholar
  84. 84.
    T. Hey, S. Tansley, K. Tolle, The Fourth Paradigm: Data-Intensive Scientific Discovery, edited by T. Hey, S. Tansley, K. Tolle (Microsoft Research, Redmond, Washington, 2009)Google Scholar
  85. 85.
    M. Banko, E. Brill, Proceedings of the 39th Annual Meeting of the Association for Computational Linguistics (ACL 2001) (Toulouse, France, 2001), p. 26Google Scholar
  86. 86.
    A. Halevy, P. Norvig, F. Pereira, Comm. ACM 24, 812 (2009)Google Scholar
  87. 87.
    T. Brants, C. Ashok, Popat, P. Xu, F.J. Och, J. Dean, Proceedings of the 2007 Joint Conference on Empirical Methods in Natural Language Processing and Computational Natural Language Learning (Prague, Czech Republic, 2007), p. 858Google Scholar
  88. 88.
    J. Lin, C. Dyer, Synthesis Lectures on Human Language Technologies (Morgan & Claypool, 2010)Google Scholar
  89. 89.
    J. Dean, S. Ghemawat, Proceedings of the 6th Symposium on Operating System Design and Implementation (OSDI 2004) (San Francisco, California, 2004), p. 137Google Scholar
  90. 90.
    R. Pike, S. Dorward, R. Griesemer, S. Quinlan, Scientific Programming Journal Special Issue on Grids and Worldwide Computing Programming Models and Infrastructure 13, 227Google Scholar
  91. 91.
    A. Awadallah, How Hadoop Revolutionized Data Warehousing at Yahoo and Facebook (CTO, Cloudera, Inc., 2009), how-hadoop-revolutionized-data-warehousing-at-yahoo-and-facebookGoogle Scholar
  92. 92.
    J. Hofman, Large-Scale Social Media Analysis with Hadoop (Yahoo! Research, 2010) with-hadoopGoogle Scholar
  93. 93.
    A. Manus Mc, M.-T. Kechadi, Data Mining V: Data Mining, Text Mining and Their Business Applications (2004), p. 189Google Scholar
  94. 94.
    S.H. Muggleton, Nature 440, 409410 (2006)CrossRefGoogle Scholar
  95. 95.
    A. Szalay, J. Gray, Nature 440, 413414 (2006)CrossRefGoogle Scholar
  96. 96.
    I. Foster, Nature 440, 419 (2006)ADSCrossRefGoogle Scholar
  97. 97.
    Eds., Nature 455, 1 (2008)Google Scholar
  98. 98.
    S. Nelson, Nature 455, 36 (2008)ADSCrossRefGoogle Scholar
  99. 99.
    C. Lynch, Nature 455, 28 (2008)ADSCrossRefGoogle Scholar
  100. 100.
    C. Doctorow, Nature, 455, 16 (2008)CrossRefGoogle Scholar
  101. 101.
    Google spotlights data center inner workings, 9955184-7.htmlGoogle Scholar
  102. 102.
    D. Butler, Nature 449, 644Google Scholar
  103. 103.
    Eds., Nature 449, 637Google Scholar
  104. 104.
    G. Pass, A. Chowdhury, C. Torgeson, Proc. 1st Int. Conference on Scalable Information Systems (Hong Kong, 2006)Google Scholar
  105. 105.
    N. Eagle, A. Pentland, Personal Ubiquitous Comput 10 (2006)Google Scholar
  106. 106.
    N. Eagle, A. Pentland, D. Lazer, PNAS 106, 36 (2009)CrossRefGoogle Scholar
  107. 107.
    The Jerusalem Declaration is part of the WP9 “Data in complex systems” of the GIACS Coordination Action n. 012380, jerusalemSubscription.htmlGoogle Scholar
  108. 108.
    A. Vespignani, Science 325, 425 (2009)MathSciNetADSCrossRefzbMATHGoogle Scholar
  109. 109.
    A. Barabasi, Science 325, 412 (2009)MathSciNetADSCrossRefGoogle Scholar
  110. 110.
    E. Ostrom, Science 325, 419 (2009MathSciNetADSCrossRefzbMATHGoogle Scholar
  111. 111.
    Google Flu Trends, Scholar
  112. 112.
    N.A. Christakis, J.H. Fowler, PLoS ONE 5, e12948 (2010)ADSCrossRefGoogle Scholar
  113. 113.
    J.V. Henderson, A. Storeygard, D.N. Weil, NBER Working Paper No. w15199 (2009)Google Scholar
  114. 114.
    L. Backstrom, C. Dwork, J. Kleinberg, Proc. 16th Int. World Wide Web Conference (2007)Google Scholar
  115. 115.
    EU Commission plans more harmonisation of data protection law. Scholar
  116. 116.
    P. Bajaria, J. Yeo, Inf. Econom. Policy 21, 90 (2009)CrossRefGoogle Scholar
  117. 117.
    C. Schultz, Transparency and tacit collusion (2001)Google Scholar
  118. 118.
    B. Kluger, S.B. Wyatt, J. Financial Quant. Anal. 37, 449 (2002)CrossRefGoogle Scholar
  119. 119.
    M. Michael, J.E. Moreira, D. Shiloach, R.W. Wisniewski, Parallel and Distributed Processing Symposium, IEEE International (2007)Google Scholar
  120. 120.
    L.A. Barroso, Hölzle, The Datacenter as a Computer: An Introduction to the Design of Warehouse-Scale Machines (Morgan & Claypool Publishers, 2009)Google Scholar
  121. 121.
    A. Jacobs, ACM Queue 7 (2009)Google Scholar
  122. 122.
    SSD Myths and Legends - “write endurance”, ssdmyths-endurance.htmlGoogle Scholar
  123. 123.
    A. Mazlouimian, D. Helbing, Y.-H. Eom, S. Lozano, S. Fortunato, How citation boosts trigger scientific paradigm shifts (2010) (in preparation)Google Scholar
  124. 124.
    D. Helbing, M. Treiber, N.J. Saam, Phys. Rev. E 71, 067101 (2005)ADSCrossRefGoogle Scholar
  125. 125.
    S.E. Asch, Psychol. Monogr. 70, 9 (1956)CrossRefGoogle Scholar
  126. 126.
    F. Winter, H. Rauhut, D. Helbing, Jena Economic Research Papers (2009)Google Scholar
  127. 127.
    D. Helbing, A. Johansson, SFI Working Paper #09-09-040 (2009)Google Scholar
  128. 128.
    D. Helbing, W. Yu, Proceedings of the National Academy of Sciences USA (PNAS) 106, 3680 (2009)ADSCrossRefGoogle Scholar
  129. 129.
    D. Helbing, W. Yu, H. Rauhut, Self-organization and emergence in social systems, Modeling the coevolution of social environments and cooperative behavior, SFI Working Paper #09-07-026 (2009)Google Scholar
  130. 130.
    Four million British identities are up for sale on the Internet, http://technology. Scholar
  131. 131.
    E. Diener, R. Crandall, Ethics in Social and Behavioral Research (University of Chicago Press, Chicago, 1978)Google Scholar
  132. 132.
    R. Geambasu, T. Kohno, A. Levy, H.M. Levy, Proceedings of the USENIX Security Symposium (Montreal, Canada, 2009)Google Scholar
  133. 133.
    It seems it not so easy to clear ones name on-line, even when trying hard. This is specially true for traces left on social network Web sites, for which specific applications, such as, have been created in order to accomplish this task. For a discussion based on a true story see Name-OnlineGoogle Scholar
  134. 134.
    Data, data everywhere, The Economist (2010)Google Scholar
  135. 135.
    L. Lessig, Against Transparency, The New Republic (2009), article/books-and-arts/against-transparencyGoogle Scholar
  136. 136.
    A. Diekmann, W. Przepiorka, H. Rauhut, Z. Soziol. 40, 74 (2011)Google Scholar
  137. 137.
    A.C. Kinsey, W.B. Pomeroy, C.E. Martin, Sexual Behavior in the Human Male (Saunders, Philadelphia, 1948)Google Scholar
  138. 138.
    A.C. Kinsey, W.B. Pomeroy, C.E. Martin, P.H. Gebhard, Sexual Behavior in the Human Female (Saunders, Philadelphia, 1953)Google Scholar
  139. 139.
    Symantec Internet Security Threat Report, theme.jsp?themeid=threatreportGoogle Scholar
  140. 140.
    A. Janc, L. Olejnik, Feasibility and Real-World Implications of Web Browser History DetectionGoogle Scholar
  141. 141.
    G. Wondracek, T. Holz, E. Kirda, C. Kruegel, A Practical Attack to De-Anonymize Social Network Users. Technical Report TR-iSecLab-0110-001Google Scholar
  142. 142.
    Google admits it accidentally gathered WiFi data, 8a23b394-5fab-11df-a670-00144feab49a.htmlGoogle Scholar
  143. 143.
    Google to hand over intercepted data, 11df-9f43-00144feabdc0.htmlGoogle Scholar
  144. 144.
    Lawyers Claim Google Wi-Fi Sniffing “Is Not an Accident”, http://gizmodo. com/5554960/lawyers-claim-google-wi+fi-sniffing-is-not-an-accidentGoogle Scholar
  145. 145.
    Wi-Fi Data Captured By Google Street View Cars Included Passwords, cars-included-passwordsGoogle Scholar
  146. 146.
    Statement of Ethical Practice for the British Sociological Association, BSA, the British Sociological Society, 2002, Statement+Ethical+Practice.htmGoogle Scholar
  147. 147.
    Ethical Guidelines, Social Research Association (2003), http://www.the-sra. Scholar
  148. 148.
    D. Sally, I. Ron, H. Ursula, An EU Code of Ethics for Socio-Economic Research (The Institute of Employment Studies, 2004)Google Scholar
  149. 149.
    The British Psychological Society, Report of the Working Party on Conducting Research on the Internet (2007), conduct/Google Scholar
  150. 150.
    Senator calls on FTC to tackle social-net privacy, 8301-13577_3-20003415-36.htmlGoogle Scholar
  151. 151.
    The Electronic Frontier Foundation published a timeline of Facebook’s privacy policy modifications over the years, facebook-timelineGoogle Scholar
  152. 152.
    Watchdog files complaint over Facebook “privacy” settings, http://www. Scholar
  153. 153.
    Exclusive: Google, CIA Invest in “Future” of Web Monitoring, http://www. Scholar
  154. 154.
    X. Su, T.M. Khoshgoftaar, Adv. Artificial Intell. (2009)Google Scholar
  155. 155.
    E.J. Candes, T. Tao, IEEE Trans. Inform. Theory 56, 2053 (2009)MathSciNetCrossRefGoogle Scholar
  156. 156.
    M. Bezzi, et al. (eds.), Privacy and Identity Management for Life (Springer, 2009)Google Scholar
  157. 157.
    G. Ziegler, C. Farkas, A. Lörincz, Inf. Software Technol. 48, 726 (2006)CrossRefGoogle Scholar
  158. 158.
    Apple’s Worst Security Breach: 114,000 iPad Owners Exposed, http://gawker. com/5559346/apples-worst-security-breach-114000-ipad-owners-exposedGoogle Scholar
  159. 159.
    T-Mobile confirms biggest phone customer data breach, Scholar
  160. 160.
    EU warns on Facebook privacy, 27iht-facebook.4-417144.htmlGoogle Scholar
  161. 161.
    German minister warns Facebook over privacy rules, http://blog.foreignpolicy. com/posts/2010/04/05/german_minister_warns_facebook_over_privacy_rulesGoogle Scholar
  162. 162.
    C. Cattuto, W. Van den Broeck, A. Barrat, V. Colizza, J.-F. Pinton, A. Vespignani, PLoS ONE 5, e11596 (2010)ADSCrossRefGoogle Scholar
  163. 163.
    J. Krumm, Person. Ubiquit. Comp. 13, 391 (2009)CrossRefGoogle Scholar
  164. 164.
    D. Helbing, W. Yu, PNAS 107, 5265 (2010)ADSCrossRefGoogle Scholar
  165. 165.
    Internet Reputation Management: neutralize negative publicity, http://www. Scholar
  166. 166.
    Reputation Management Consultants, http://www.reputationmanagementconsultants. com/Google Scholar
  167. 167.
    Reputation Defender, Scholar
  168. 168.
    Squidoo: Internet Reputation Management, reputation-managementGoogle Scholar
  169. 169.
    European privacy seals for IT products and IT-based services, https://www. Scholar
  170. 170.
    Ixquick: the world’s most private search engine, Scholar
  171. 171. was a website created to post information about neighbors and find information about new potential neighbors before moving. Launched in July 2007, it was discontinued in July 2009Google Scholar
  172. 172.
    Digging into Data List of Data Repositories, Repositories/tabid/167/Default.aspxGoogle Scholar
  173. 173.
    Digging into Data, Scholar
  174. 174.
    Transparency is at the heart of this Government, is home to national & local data for free re-use, Scholar
  175. 175.
    Data.Gov Empowering people, Scholar
  176. 176.
    Dataverse Project: An Open-Source Application for Publishing, Citing and Discovering Research Data, Scholar
  177. 177.
    Apache WSIF: Web Service Invocation Framework, Scholar
  178. 178.
    ETH Financial Crisis Observatory, Scholar
  179. 179.
    123 People, http://www.123people.comGoogle Scholar
  180. 180.
    Oakland Crimespotting is an interactive map of crimes in Oakland and a tool for understanding crime in cities, http://oakland.crimespotting.orgGoogle Scholar
  181. 181.
    Government requests directed to Google and YouTube, governmentrequests/Google Scholar
  182. 182.
    Mechanical Turk is a market place for work, Scholar
  183. 183.
    Micro Payment: professional payment provider, http://micropayment.deGoogle Scholar
  184. 184.
    Vanish: self-destructing digital data, http://vanish.cs.washington.eduGoogle Scholar
  185. 185.
    Did you watch porn? http://www.didyouwatchporn.comGoogle Scholar
  186. 186.
    What the Internet knows about you, This page checks your browser history and determines which of the 5000 most popular Internet websites you’ve recently visited, http://www.whattheinternetknowsaboutyou.comGoogle Scholar
  187. 187.
    P. Eckersley, How Unique Is Your Web Browser? (Electronic Frontier Foundation, 2009)Google Scholar
  188. 188.
    Panopticlick: How unique and trackable is your browser? https://panopticlick. eff.orgGoogle Scholar
  189. 189.
    EFF: Forget cookies, your browser has fingerprints, http://www.computerworld. com/s/article/9176904/EFF_Forget_cookies_your_browser_has_fingerprintsGoogle Scholar
  190. 190.
    WUALA, Backup. Store. Share. Access Everywhere, Scholar
  191. 191.
    Tor: anonymity online, Scholar
  192. 192.
    Freenet, the free network, Scholar
  193. 193.
    QLectives (Quality Collectives), http://www.qlectives.euGoogle Scholar
  194. 194.
    Datenschutz fr iPhone-Apps, 100930_MBusiness_Apps_sch/indexGoogle Scholar
  195. 195.
    DIASPORA, The privacy aware, personally controlled, do-it-all, open source social network, Scholar
  196. 196.
    Security Focus, http://www.securityfocus.comGoogle Scholar
  197. 197.
    ICKN Galaxy Advisors, http://ickn.orgGoogle Scholar
  198. 198.
    PostRank: Intelligence from the social web, Scholar
  199. 199.
    Soziale Netzwerke verraten künftiges Käuferverhalten, http://www.tagesanzeiger. ch/digital/internet/Soziale-Netzwerke-verraten-kuenftiges-Kaeuferverhalten/ story/19928880Google Scholar
  200. 200.
    M.M. Gaber, A. Zaslavsky, S. Krishnaswamy, ACM SIGMOD Record Arch. 34, 18 (2005)CrossRefGoogle Scholar
  201. 201.
    A. Bifet, R.K. August, Data Stream Mining: A Practical Approach (The University of Waikato, 2009)Google Scholar
  202. 202.
    J. Leskovec, L. Backstrom, J. Kleinberg, Proceedings of the 15th ACM SIGKDD international conference on Knowledge discovery and data mining (2009), p. 497Google Scholar
  203. 203.
    R. Agrawal, R. Srikant, Proceedings of the 2000 ACM SIGMOD international conference on Management of data (2000), p. 439Google Scholar
  204. 204.
    P. Samarati, L. Sweeney, Proceedings of the Seventeenth ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems (ACM Press, 1998)Google Scholar
  205. 205.
    C.C. Aggarwal, P.S. Yu, Privacy-Preserving Data Mining: Models and Algorithms (Springer, 2008), p. 530Google Scholar
  206. 206.
    M. Atzori, F. Bonchi, F. Giannotti, D. Pedreschi, VLDB J. 17, 703 (2006)Google Scholar
  207. 207.
    B.C. Chen, D. Kifer, K. LeFevre, A., Machanavajjhala, Found. Trends Databases 2, 1167 (2009)Google Scholar
  208. 208.
    B.-C. Chen, D. Kifer, K. LeFevre, A., Machanavajjhala, Found. Trends Databases 2, 1167 (2009)Google Scholar
  209. 209.
    A. Narayanan, V. Shmatikov, IEEE Symposium on In Security and Privacy SP 2008 (IEEE Symposium, 2008), p. 111Google Scholar
  210. 210.
    R. Jones, R. Kumar, B. Pang, A. Tomkins, CIKM ’08: Proceeding of the 17th ACM conference on Information and knowledge management (2008), p. 853Google Scholar
  211. 211.
    F. Giannotti, D. Pedreschi, Mobility, Data Mining and Privacy: Geographic Knowledge Discovery (Springer, 2008), p. 410Google Scholar
  212. 212.
    A. Monreale, G. Andrienko, N. Andrienko, F. Giannotti, D. Pedreschi, S. Rinzivillo, S. Wrobel, Transactions on Data Privacy 3, 91 (2010), issues/abs.a045a10.phpMathSciNetGoogle Scholar
  213. 213.
    Project Gaydar, project_gaydar_an_mit_experiment_raises_new_questions_about_online_privacy/Google Scholar

Copyright information

© EDP Sciences and Springer 2011

Authors and Affiliations

  1. 1.ETH Zurich, CLUZurichSwitzerland
  2. 2.Santa Fe InstituteSanta FeUSA

Personalised recommendations