The European Physical Journal Special Topics

, Volume 193, Issue 1, pp 133–160 | Cite as

Creep, relaxation and viscosity properties for basic fractional models in rheology

Modelling Regular Article

Abstract.

The purpose of this paper is twofold: from one side we provide a general survey to the viscoelastic models constructed via fractional calculus and from the other side we intend to analyze the basic fractional models as far as their creep, relaxation and viscosity properties are considered. The basic models are those that generalize via derivatives of fractional order the classical mechanical models characterized by two, three and four parameters, that we refer to as Kelvin–Voigt, Maxwell, Zener, anti–Zener and Burgers. For each fractional model we provide plots of the creep compliance, relaxation modulus and effective viscosity in non dimensional form in terms of a suitable time scale for different values of the order of fractional derivative. We also discuss the role of the order of fractional derivative in modifying the properties of the classical models.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R.L. Bagley, Frac. Cal. Appl. Anal. 10, 123 (2007)MathSciNetMATHGoogle Scholar
  2. 2.
    R.B. Bird, J.M. Wiest, Ann. Rev. Fluid Mechan. 27, 169 (1995)MathSciNetADSCrossRefGoogle Scholar
  3. 3.
    D.R. Bland, The Theory of Linear Viscoelasticity (Pergamon, Oxford, 1960)Google Scholar
  4. 4.
    V. Cannelli, D. Melini, A. Piersanti, Ann. Geophys. 53, 89 (2010)Google Scholar
  5. 5.
    M. Caputo, J.R. Astr. Soc. 13, 529 (1967) [Reprinted in Fract. Calc. Appl. Anal. 11, 4 (2008)MathSciNetGoogle Scholar
  6. 6.
    M. Caputo, Elasticità e Dissipazione (Zanichelli, Bologna, 1969) [in Italian]Google Scholar
  7. 7.
    M. Caputo, F. Mainardi, Pure Appl. Geophys. (PAGEOPH) 91, 134 (1971a) [Reprinted in Fract. Calc. Appl. Analy. 10, 309 (2007)MathSciNetMATHGoogle Scholar
  8. 8.
    M. Caputo, F. Mainardi, Riv. Nuovo Cimento (Ser. II) 1, 161 (1971b)ADSCrossRefGoogle Scholar
  9. 9.
    J.M. Carcione, Theory and Numerical Simulation of Wave Propagation in Anisotropic, Anelastic and Porous Media, 2nd edn. (Elsevier, Amsterdam, 2007)Google Scholar
  10. 10.
    G. Doetsch, Introduction to the Theory and Application of the Laplace Transformation (Springer Verlag, Berlin, 1974)Google Scholar
  11. 11.
    W.N. Findley, J.S. Lai, K. Onaran, Creep and Relaxation of Nonlinear Viscoelastic Materials with an Introduction to Linear Viscoelasticity (North-Holland, Amsterdam, 1976)Google Scholar
  12. 12.
    I.M. Gel’fand, G.E. Shilov, Generalized Functions, Vol. 1 (Academic Press, New York, 1964)Google Scholar
  13. 13.
    C. Giunchi, G. Spada, Geophys. Res. Lett. 27, 2065 (2000)ADSCrossRefGoogle Scholar
  14. 14.
    R. Gorenflo, J. Loutchko, Yu. Luchko, Fract. Calc. Appl. Anal. 5, 491 (2002)MathSciNetMATHGoogle Scholar
  15. 15.
    R. Gorenflo, J. Loutchko, Yu. Luchko, Corrections Fract. Calc. Appl. Anal. 6, 111 (2003)MathSciNetGoogle Scholar
  16. 16.
    R. Gorenflo, F. Mainardi, in Fractals and Fractional Calculus in Continuum Mechanics, edited by A. Carpinteri, F. Mainardi (Springer Verlag, Wien, 1997), p. 223 [E-print: http://arxiv.org/abs/0805.3823]Google Scholar
  17. 17.
    N. Heymans, I. Podlubny, Rheol. Acta. 45, 765 (2006)CrossRefGoogle Scholar
  18. 18.
    H. Jeffreys, The Earth, 1st edn., §14.423 (Cambridge University Press, Cambridge, 1924), p. 224Google Scholar
  19. 19.
    H. Jeffreys, The Earth, 5th edn., §8.13 (Cambridge University Press, Cambridge, 1970), p. 321Google Scholar
  20. 20.
    H. Jeffreys, Geophys. J. Roy. Astr. Soc. 1, 92 (1958)CrossRefGoogle Scholar
  21. 21.
    A.A. Kilbas, H.M. Srivastava, J.J. Trujillo, Theory and Applications of Fractional Differential Equations (Elsevier, Amsterdam, 2006)Google Scholar
  22. 22.
    Y. Klausner, Fundamentals of Continuum Mechanics of Soils (Springer Verlag, Berlin, 1991)Google Scholar
  23. 23.
    M. Körnig, G. Müller, Geophys. J. Int. 98, 243 (1989)ADSCrossRefGoogle Scholar
  24. 24.
    C.P. Li, Z.G. Zhao, Eur. Phys. J. Special Topics 193, 5 (2011)ADSCrossRefGoogle Scholar
  25. 25.
    J.G. Liu, M.Y. Xu, Mech. Time-Depend. Mater. 10, 263 (2006)ADSCrossRefGoogle Scholar
  26. 26.
    F. Mainardi, R. Gorenflo, Fract. Calc. Appl. Anal. 10, 269 (2007) [E-print: http://arxiv.org/abs/0801.4914]MathSciNetMATHGoogle Scholar
  27. 27.
    F. Mainardi, in Proceedings the 1-st IFAC Workshop on Fractional Differentiation and its applications (FDA’04), edited by A. Le Méhauté, J.A. Tenreiro Machado, J.C. Trigeassou, J. Sabatier (ENSEIRB, Bordeaux (France), 19–21 July 2004), p. 62Google Scholar
  28. 28.
    F. Mainardi, Fractional Calculus and Waves in Linear Viscoelasticity (Imperial College Press–World Scientific, London, 2010)Google Scholar
  29. 29.
    F. Mainardi, An historical perspective on fractional calculus in linear viscoelasticity, [E-print http://arxiv.org/abs/1007.2959]Google Scholar
  30. 30.
    D. Melini, V. Cannelli, A. Piersanti, G. Spada, Geophys. J. Int. 174, 672 (2008)ADSCrossRefGoogle Scholar
  31. 31.
    D. Melini, G. Spada, A. Piersanti, Geophys. J. Int. 180, 88 (2010)ADSCrossRefGoogle Scholar
  32. 32.
    G. Müller, Geophys. J. R. Astr. Soc. 87, 1113 (1986)CrossRefGoogle Scholar
  33. 33.
    G. Müller, Erratum, Geophys. J. R. Astr. Soc. 91, 1135 (1987)CrossRefGoogle Scholar
  34. 34.
    K.D. Papoulia, V.P. Panoskaltsis, N.V. Kurup, I. Korovajchuk, Rheol. Acta 49, 381 (2010)CrossRefGoogle Scholar
  35. 35.
    A.C. Pipkin, Lectures on Viscoelastic Theory, 2nd edn. (Springer Verlag, New York, 1986)Google Scholar
  36. 36.
    I. Podlubny, Fractional Differential Equations (Academic Press, San Diego, 1999)Google Scholar
  37. 37.
    G.M. Scott-Blair, Survey of General and Applied Rheology (Pitman, London, 1949)Google Scholar
  38. 38.
    G. Spada, ALMA, Comp. Geosci. 34, 667 (2008)CrossRefGoogle Scholar
  39. 39.
    G. Spada, L. Boschi, Geophys. J. Int. 166, 309 (2006)ADSCrossRefGoogle Scholar
  40. 40.
    Spada G., Colleoni F., Ruggieri G., Tectonophysics (in press) (2010), doi:10.1016/j.tecto.2009.12.020Google Scholar
  41. 41.
    D. Verotta, J. Phamacokinet. Pharmacodyn. 37, 209 (2010)CrossRefGoogle Scholar
  42. 42.
    D. Verotta, J. Pharmacokinet. Pharmacodyn. 37, 257 (2010)CrossRefGoogle Scholar
  43. 43.
    P. Wessel, W.H.F. Smith, Eos Trans. Amer. Geophys. Union 79, 579 (1998)ADSCrossRefGoogle Scholar
  44. 44.
    C. Zener, Elasticity and Anelasticity of Metals (University of Chicago Press, Chicago, 1948)Google Scholar

Copyright information

© EDP Sciences and Springer 2011

Authors and Affiliations

  1. 1.Department of PhysicsUniversity of BolognaBolognaItaly
  2. 2.Dipartimento di Scienze di Base e Fondamenti, University of UrbinoUrbinoItaly

Personalised recommendations