The European Physical Journal Special Topics

, Volume 192, Issue 1, pp 121–128 | Cite as

Impact of electric fields on the speed of contact line in vertical deposition of diluted colloids

  • M. Giuliani
  • M. Pichumani
  • W. González-Viñas
Regular Article


We report experimental results on the influence of electric fields on the contact line dynamics of the vertical deposition of water-based diluted colloidal suspensions. We measure the speed of macroscopically receding contact line for different initial concentrations and applied voltages. We explain the observed behavior via the electrophoretic effect in the region near the contact line. The electrophoretic effect induces a concentration gradient along the direction of the applied field which influences the morphology of the dried deposit of colloidal particles. Thus the applied field has an effect on the receding contact line through morphological formation and its transition.


European Physical Journal Special Topic Colloidal Particle Contact Line Colloidal Crystal Growth Speed 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    L. Bragg, J. Nye, Proc. R. Soc. London 190, 474 (1947)CrossRefADSGoogle Scholar
  2. 2.
    L. Shereda, R. Larson, M. Solomon, Phys. Rev. Lett. 101, 16 (2008)CrossRefGoogle Scholar
  3. 3.
    D. Derks, Y.L. Wu, A. van Blaaderen, A. Imhof, Soft Matter 5, 1060 (2009)CrossRefADSGoogle Scholar
  4. 4.
    M. Giuliani, W. González-Viñas, K. Poduska, A. Yethiraj, J. Phys. Chem. Lett. 1, 1481 (2010)CrossRefGoogle Scholar
  5. 5.
    A. Yethiraj, A. van Blaaderen, Nature 421, 513 (2003)CrossRefADSGoogle Scholar
  6. 6.
    A. Yethiraj, A. Wouterse, B. Groh, A. van Blaaderen, Phys. Rev. Lett. 92, 058301 (2004)CrossRefADSGoogle Scholar
  7. 7.
    K. Lin, J. Crocker, V. Prasad, A. Schofield, D. Weitz, T. Lubensky, A. Yodh, Phys. Rev. Lett. 85, 1770 (2000)CrossRefADSGoogle Scholar
  8. 8.
    C. Murray, Annu. Rev. Phys. Chem. 47, 421 (1996)CrossRefADSGoogle Scholar
  9. 9.
    E. Weeks, J. Crocker, A. Levitt, A. Schofield, D. Weitz, Science 287, 627 (2000)CrossRefADSGoogle Scholar
  10. 10.
    H. Bodiguel, F. Doumenc, B. Guerrier, Eur. Phys. J. Special Topics 166, 29 (2009)CrossRefADSGoogle Scholar
  11. 11.
    H. Bodiguel, F. Doumenc, B. Guerrier, Langmuir 26, 10758 (2010)CrossRefGoogle Scholar
  12. 12.
    G. Berteloot, C.T. Pham, A. Daerr, F. Lequeux, L. Limat, Europhys. Lett. 83, 14003 (2008)CrossRefADSGoogle Scholar
  13. 13.
    K.Q. Zhang, X.Y. Liu, J. Chem. Phys. 130, 184901 (2009)CrossRefADSGoogle Scholar
  14. 14.
    C.J. Brinker, Y. Lu, A. Sellinger, H. Fan, Adv. Mater. 11, 579 (1999)CrossRefGoogle Scholar
  15. 15.
    K. Davis, W. Russel, W. Glantschnig, J. Chem. Soc. Faraday Trans. 87, 411 (1991)CrossRefGoogle Scholar
  16. 16.
    H. Míguez, F. Meseguer, C. López, A. Mifsud, J. Moya, L. Vázquez, Langmuir 13, 6009 (1997)CrossRefGoogle Scholar
  17. 17.
    P. Segrè, F. Liu, P. Umbanhowar, D. Weitz, Nature 409, 594 (2001)CrossRefADSGoogle Scholar
  18. 18.
    M. Yoldi, W. González-Viñas, M.C. Arcos, R. Sirera, J. Mater. Sci. 41, 2965 (2006)CrossRefADSGoogle Scholar
  19. 19.
    A. Mihi, M. Ocaña, H. Míguez, Adv. Mater. 18, 2244 (2006)CrossRefGoogle Scholar
  20. 20.
    C. Arcos, K. Kumar, W. González-Viñas, R. Sirera, K.M. Poduska, A. Yethiraj, Phys. Rev. E 77, 050402(R) (2008)CrossRefADSGoogle Scholar
  21. 21.
    A.S. Dimitrov, K. Nagayama, Langmuir 12, 1303 (1996)CrossRefGoogle Scholar
  22. 22.
    P. Jiang, J.F. Bertone, K.S. Hwang, V.L. Colvin, Chem. Mater. 11, 2132 (1999)CrossRefGoogle Scholar
  23. 23.
    M. Szekeres, O. Kamalin, R.A. Schoonheydt, K. Wostyn, K. Clays, A. Persoons, I.  Dékáány, J. Mater. Chem. 12, 3268 (2002)CrossRefGoogle Scholar
  24. 24.
    M. Yoldi, C. Arcos, B.R. Paulke, R. Sirera, W. González-Viñas, E. Görnitz, Mat. Sci. Eng. C-Bio. S 28, 1038 (2008)CrossRefGoogle Scholar
  25. 25.
    M. Giuliani, W. González-Viñas, Phys. Rev. E 79, 032401 (2009)CrossRefADSGoogle Scholar
  26. 26.
    R. Shimmin, A. DiMauro, P. Braun, Langmuir 22, 6507 (2006)CrossRefGoogle Scholar
  27. 27.
    P. Kralchevsky, N. Denkov, Curr. Opin. Coll. Interf. Sci. 6, 383 (2001)CrossRefGoogle Scholar
  28. 28.
    M. Giuliani, Ph.D. thesis, University of Navarra (2010)Google Scholar
  29. 29.
    A.V. Delgado, F. González-Caballero, R.J. Hunter, L.K. Koopal, J. Lyklema, Pure Appl. Chem. 77, 1753 (2005)CrossRefGoogle Scholar
  30. 30.
    H. Verheijen, M. Prins, Langmuir 15, 6616 (1999)CrossRefGoogle Scholar
  31. 31.
    R. Hayward, D. Saville, I. Aksay, Nature 404, 56 (2000)CrossRefADSGoogle Scholar
  32. 32.
    A. Rogach, N. Kotov, D. Koktysh, J. Ostrander, G. Ragoisha, Chem. Mater. 12, 2721 (2000)CrossRefGoogle Scholar
  33. 33.
    M. Pichumani, W. González-Viñas (2010) (in preparation)Google Scholar

Copyright information

© EDP Sciences and Springer 2011

Authors and Affiliations

  • M. Giuliani
    • 1
  • M. Pichumani
    • 1
  • W. González-Viñas
    • 1
  1. 1.Dept. of Physics and Applied Math., University of Navarra. Irunlarrea s/nPamplonaSpain

Personalised recommendations