The European Physical Journal Special Topics

, Volume 192, Issue 1, pp 63–70 | Cite as

Liquid entrainment by gas flow along the interface of a liquid bridge

  • Y. Gaponenko
  • A. Miadlun
  • V. Shevtsova
Regular Article


We report the results of numerical and experimental studies of two-phase flows in an annulus. The geometry corresponds to a cylindrical liquid column co-axially placed into an outer cylinder with solid walls. Gas enters into the annular duct and entrains the initially quiescent liquid. The internal column consists of solid rods at the bottom and top, while the central part is a liquid bridge from a viscous liquid and kept in its position by surface tension. Silicone oil 5cSt was used as a test liquid and air and nitrogen as gases. An original numerical approach was developed to study the problem in complex geometry. The flow structure in the liquid is analyzed for a wide range of gas flow rates.


European Physical Journal Special Topic Liquid Bridge Outer Cylinder Interface Velocity Particle Tracking Velocimetry 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    N. Machida, K. Hoshikawa, Y. Shimizu, J. Crystal Growth 210, 532 (2000)CrossRefADSGoogle Scholar
  2. 2.
    A.M. Ganan-Calvo, J.M. Montanero, Phys. Rev. E 79, 066305 (2009)CrossRefADSGoogle Scholar
  3. 3.
    V. Shevtsova, M. Mojahed, J.C. Legros, Acta Astronautica 44, 625 (1999)CrossRefADSGoogle Scholar
  4. 4.
    V. Shevtsova, A. Mialdun, M. Mojahed, J. Non-Equilib. Thermodyn. 30, 261 (2005)CrossRefADSGoogle Scholar
  5. 5.
    A. Mialdun, V. M. Shevtsova, 2006, Microgravity Sci. Technol., XVIII-3/4, 146Google Scholar
  6. 6.
    Y. Kamotani, L. Wang, S. Hatta, A. Wang, S. Yoda, Int. J. Heat Mass Transfer 46, 3211 (2003)CrossRefGoogle Scholar
  7. 7.
    A. Wang, Y. Kamotani, S. Yoda, Int. J. Heat Mass Transfer 50, 4195 (2007)CrossRefzbMATHGoogle Scholar
  8. 8.
    I. Ueno, A. Kawazoe, H. Enomoto, Fluid Dyn. Mater. Proc. 6, 99 (2010)Google Scholar
  9. 9.
    M. Irikira, Y. Arakawa, I. Ueno, H. Kawamura, Microgravity Sci. Technol., XVI-I, 174 (2005)Google Scholar
  10. 10.
    S. Tiwari, K. Nishino, J. Crystal Growth 300, 486 (2007)CrossRefADSGoogle Scholar
  11. 11.
    D. Melnikov, V. Shevtsova, Fluid Dyn. Mater. Proc. 3, 329 (2007)Google Scholar
  12. 12.
    L.P. Yarin, A. Mosyak, G. Hestroni, Fluid flow, heat transfer and boiling in micro channels (Berlin, Springer, 2009)Google Scholar
  13. 13.
    M. Nishimura, I. Ueno, K. Nishino, H. Kawamura, Exper. Fluids 38, 285 (2005)CrossRefADSGoogle Scholar
  14. 14.
    C. Ferrera, J.M. Montanero, A. Mialdun, V. Shevtsova, M.G. Cabezas, Meas. Sci. Technol. 19, 015410 (2008)CrossRefADSGoogle Scholar
  15. 15.
    Y. Gaponenko, I. Ryzhkov, V. Shevtsova, Fluid Dyn. Mater. Proc. 6, 75 (2010)MathSciNetzbMATHGoogle Scholar
  16. 16.
    V. Shevtsova, J. Crystal Growth 280, 632 (2005)CrossRefADSGoogle Scholar

Copyright information

© EDP Sciences and Springer 2011

Authors and Affiliations

  • Y. Gaponenko
    • 1
  • A. Miadlun
    • 1
  • V. Shevtsova
    • 1
  1. 1.Université Libre de BruxellesBruxellesBelgium

Personalised recommendations