The European Physical Journal Special Topics

, Volume 192, Issue 1, pp 47–61 | Cite as

Magnetic stabilization, transition and energy analysis in the Marangoni driven Full-Zone at low Prandtl numbers

  • Y. Huang
  • B.C. Houchens
Regular Article


The linear stability of the Marangoni-driven Full-Zone is investigated for low Prandtl number fluids. A constant and uniform magnetic field is applied along the axial axis of the liquid bridge to stabilize the axisymmetric base state. Dramatic contraction of the flow circulation in both radial and azimuthal directions is observed with moderate magnetic fields. The numerical solution utilizes a vorticity transport formulation and high resolution spectral collocation scheme with Chebyshev polynomial basis functions. Critical transitions to three-dimensional, stationary flows are observed up to Ha = 300 for Pr = 0.02 and Ha = 500 for Pr = 0.001. A hydrodynamically driven instability is suggested by the perturbation flows and confirmed through an energy analysis.


Vorticity Free Surface European Physical Journal Special Topic Linear Stability Analysis Liquid Bridge 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    T. Tanaka, E. Bannai, S. Kawai, T. Yamane, J. Crystal Growth 30, 193 (1975)CrossRefADSGoogle Scholar
  2. 2.
    A. Eyer, R. Nitsche, H. Zimmermann, J. Crystal Growth 47, 219 (1979)CrossRefADSGoogle Scholar
  3. 3.
    A. Cröll, P. Dold, K.W. Benz, J. Crystal Growth 137, 95 (1994)CrossRefADSGoogle Scholar
  4. 4.
    A. Cröll, F.R. Szofran, P. Dold, K.W. Benz, S.L. Lehoczky, J. Crystal Growth 183, 554 (1998)CrossRefADSGoogle Scholar
  5. 5.
    H. Kimura, M.F. Harvey, D.J. O’Connor, G.D. Robertson Jr, G.C. Valley, J. Crystal Growth 62, 523 (1983)CrossRefADSGoogle Scholar
  6. 6.
    G.D. Robertson Jr, D. O’Connor, J. Crystal Growth 76, 111 (1986)CrossRefADSGoogle Scholar
  7. 7.
    I. Martinez, A. Eyer, J. Crystal Growth 75, 535 (1986)CrossRefADSGoogle Scholar
  8. 8.
    S. Nakamura, T. Hibiya, K. Kakimoto, N. Imaishi, S. Nishizawa, A. Hirata, K. Mukai, S. Yoda, T.S. Morita, J. Crystal Growth 186, 85 (1998)CrossRefADSGoogle Scholar
  9. 9.
    X.F. Shen, A.V. Anilkumar, R.N. Grugel, T.G. Wang, J. Crystal Growth 165, 438 (1996)CrossRefADSGoogle Scholar
  10. 10.
    M. Lappa, Fluid Dyn. Mater. Proc. 1, 171 (2005)ADSGoogle Scholar
  11. 11.
    J. Baumgartl, M. Gewald, R. Rupp, J. Stierlen, G. Muller, Proc. 7th Eur. Symp. on Materials, Fluid Science in Microgravity, Oxford, ESA SP-295, 47 (1990)Google Scholar
  12. 12.
    T.E. Morthland, J.S. Walker, J. Crystal Growth 158, 471 (1996)CrossRefADSGoogle Scholar
  13. 13.
    M. Lappa, Phys. Fluids 16, 331 (2004)CrossRefADSGoogle Scholar
  14. 14.
    B.C. Houchens, J.S. Walker, J. Thermophys. Heat Transf. 137, 186 (2005)CrossRefGoogle Scholar
  15. 15.
    G. Chen, A. Lizée, B. Roux, J. Crystal Growth 180, 638 (1997)CrossRefADSGoogle Scholar
  16. 16.
    M. Lappa, Computers Fluids 34, 743 (2005)CrossRefzbMATHGoogle Scholar
  17. 17.
    O. Bouizi, C. Delcarte, G. Kasperski, Phys. Fluids 19, 114102 (2007)CrossRefADSGoogle Scholar
  18. 18.
    C.W. Lan, B.C. Yeh, J. Crystal Growth 262, 59 (2004)CrossRefADSGoogle Scholar
  19. 19.
    C.W. Lan, B.C. Yeh, Fluid Dyn. Mater. Proc. 1, 33 (2005)Google Scholar
  20. 20.
    M. Prange, M. Wanschura, H.C. Kuhlmann, H.J. Rath, J. Fluid Mechan. 394, 281 (1999)CrossRefzbMATHADSGoogle Scholar
  21. 21.
    E. Anderson et al. Linear Algebra PACKage (1999)Google Scholar
  22. 22.
    Intel ™ Intel ™ Math Kernel Library (2008)Google Scholar
  23. 23.
    M. Wanschura, V.M. Shevtsova, H.C. Kuhlmann, H.J. Rath, Phys. Fluids 7, 912 (1995)CrossRefzbMATHADSGoogle Scholar
  24. 24.
    SUG@R. Shared University Grid at Rice (2008)Google Scholar
  25. 25.
    M. Levenstam, G. Amberg, J. Fluid Mechan. 297, 357 (1995)CrossRefzbMATHADSMathSciNetGoogle Scholar
  26. 26.
    H.C. Kuhlmann, C. Nienhuser, Fluid Dyn. Res. 31, 103 (2002)CrossRefzbMATHADSMathSciNetGoogle Scholar
  27. 27.
    J. Leypoldt, H.C. Kuhlmann, H.J. Rath, J. Fluid Mechan. 414, 285 (2000)CrossRefzbMATHADSGoogle Scholar

Copyright information

© EDP Sciences and Springer 2011

Authors and Affiliations

  1. 1.Rice UniversityHoustonUSA

Personalised recommendations