The European Physical Journal Special Topics

, Volume 192, Issue 1, pp 3–12 | Cite as

The mechanics of particle accumulation structures in thermocapillary flows

  • H.C. Kuhlmann
  • E. Hofmann
Regular Article


The motion of small particles suspended in a cylindrical thermocapillary liquid bridge is considered. Owing to geometry and surface stresses the streamlines gather near the cylindrical free surface and provoke particle–free-surface collisions. We show numerically that tracers which are perfect but of finite size can accumulate on closed trajectories. A simple model is proposed to explain the attraction of particles to the closed trajectory based on the flow topology in the vicinity of a closed streamline which comes sufficiently close to the free surface and on particle–free-surface collisions which transfer particles among different streamlines.


Free Surface European Physical Journal Special Topic Liquid Bridge Release Point Lagrangian Coherent Structure 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    G. Haller, T. Sapsis, Physica D 237, 573 (2008)CrossRefzbMATHADSMathSciNetGoogle Scholar
  2. 2.
    D. Schwabe, P. Hintz, S. Frank, Microgravity Sci. Technol. 9, 163 (1996)Google Scholar
  3. 3.
    S. Tanaka, H. Kawamura, I. Ueno, D. Schwabe, Phys. Fluids 18, 067103 (2006)CrossRefADSGoogle Scholar
  4. 4.
    D. Schwabe, A.I. Mizev, M. Udhayasankar, S. Tanaka, Phys. Fluids 19, 072102 (2007)CrossRefADSGoogle Scholar
  5. 5.
    I. Ueno, Y. Abe, K. Noguchi, H. Kawamura, Adv. Space Res. 41, 2145 (2008)CrossRefADSGoogle Scholar
  6. 6.
    D. Schwabe, S. Tanaka, A. Mizev, H. Kawamura, Microgravity Sci. Technol. 18, 117 (2006)CrossRefGoogle Scholar
  7. 7.
    M.K. Smith, S.H. Davis, J. Fluid Mech. 132, 119 (1983)CrossRefzbMATHADSGoogle Scholar
  8. 8.
    J. Leypoldt, H.C. Kuhlmann, H.J. Rath, J. Fluid Mech. 414, 285 (2000)CrossRefzbMATHADSGoogle Scholar
  9. 9.
    H.C. Kuhlmann, C. Nienhüser,in Interfacial Fluid Dynamics and Transport Processes, edited by R. Narayanan, D. Schwabe (Springer, Berlin, Heidelberg, 2003), Lecture Notes in Physics, vol. 628, p. 213Google Scholar
  10. 10.
    Y. Abe, I. Ueno, H. Kawamura, Interdisciplinary Transport Phenomena (2009)Google Scholar
  11. 11.
    M. Wanschura, V.S. Shevtsova, H.C. Kuhlmann, H.J. Rath, Phys. Fluids 7, 912 (1995)CrossRefzbMATHADSGoogle Scholar
  12. 12.
    J. Leypoldt, H.C. Kuhlmann, H.J. Rath, Adv. Space Res. 29, 645 (2002)CrossRefADSGoogle Scholar
  13. 13.
    H.C. Kuhlmann, H.J. Rath, Phys. Fluids A 5, 2117 (1993)CrossRefADSGoogle Scholar
  14. 14.
    H.G. Schuster, Deterministic Chaos, 2nd edn. (VCH Verlagsgesellschaft, 1988)Google Scholar
  15. 15.
    A.L. Yarin, T.A. Kowalewski, W.J. Hiller, S. Koch, Phys. Fluids 8, 1130 (1996)CrossRefzbMATHADSGoogle Scholar

Copyright information

© EDP Sciences and Springer 2011

Authors and Affiliations

  1. 1.Institute of Fluid Mechanics and Heat Transfer, Vienna University of TechnologyViennaAustria

Personalised recommendations