Advertisement

The European Physical Journal Special Topics

, Volume 191, Issue 1, pp 187–210 | Cite as

Collective escape processes in many-particle systems

  • S. FugmannEmail author
  • D. Hennig
  • L. Schimansky-Geier
  • I.M. Sokolov
Minireview

Abstract.

We study collective escape phenomena in nonlinear chain models. First we investigate the fragmentation of an overdamped polymer chain due to thermal fluctuations in the absence of an external force. We calculate the activation times of individual bonds in the coupled chain system and compare them with times obtained from Brownian dynamics simulations. We also consider a grafted chain exposed to an external force which monotonically grows as time goes on. In underdamped situations we show that collective localized excitations in a nonlinear force field with absorbing states can cause polymer fragmentation. In a similar fashion, localized modes assist a thermally activated escape of interacting particles in a metastable potential landscape which is additionally subjected to a periodic driving. The latter is necessary to obtain overcritical elongations which create localized modes even in case of stronger damping.

Keywords

Barrier Height Coupling Strength European Physical Journal Special Topic Passage Time Escape Time 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. Sato, B.E. Hubbard, A.J. Sievers, Rev. Mod. Phys. 78, 137 (2006)ADSCrossRefGoogle Scholar
  2. 2.
    S. Flach, C.R. Willis, Physics Reports 295, 181 (1998)MathSciNetADSCrossRefGoogle Scholar
  3. 3.
    T. Dauxois, M. Peyrard, C.R. Willis, Physica D 57, 267 (1992)zbMATHMathSciNetADSCrossRefGoogle Scholar
  4. 4.
    P. Reineker, R.G. Winkler, Physics Letters A 141, 264 (1989)ADSCrossRefGoogle Scholar
  5. 5.
    D. Hennig, Eur. Phys. J. B 37, 391 (2004)ADSCrossRefGoogle Scholar
  6. 6.
    S. Fugmann, D. Hennig, S. Martens, L. Schimansky-Geier, Physica D 237, 3179 (2008)zbMATHMathSciNetADSCrossRefGoogle Scholar
  7. 7.
    D. Hennig, S. Fugmann, L. Schimansky-Geier, P. Hänggi, Phys. Rev. E 76, 041110 (2007)MathSciNetADSCrossRefGoogle Scholar
  8. 8.
    S. Fugmann, D. Hennig, L. Schimansky-Geier, P. Hänggi, Phys. Rev. E 77, 061135 (2008)ADSCrossRefGoogle Scholar
  9. 9.
    M. Doi, Chem. Phys. 9, 455 (1975)ADSCrossRefGoogle Scholar
  10. 10.
    R.W. Pastor, R. Zwanzig, A. Szabo, J. Chem. Phys. 105, 3878 (1996)ADSCrossRefGoogle Scholar
  11. 11.
    G. Wilemski, M. Fixman, J. Chem. Phys. 60, 866 (1974)ADSCrossRefGoogle Scholar
  12. 12.
    G. Wilemski, M. Fixman, J. Chem. Phys. 60, 878 (1974)ADSCrossRefGoogle Scholar
  13. 13.
    P.G. de Gennes, J. Chem. Phys. 76, 3316 (1982)ADSCrossRefGoogle Scholar
  14. 14.
    A. Szabo, Kl. Schulten, Z. Schulten, J. Chem. Phys. 72, 4350 (1980)ADSCrossRefGoogle Scholar
  15. 15.
    C.F. Lee, Phys. Rev. E 80, 1 (2009)Google Scholar
  16. 16.
    S. Fugmann, I.M. Sokolov, Phys. Rev. E 81, 031804 (2010)ADSCrossRefGoogle Scholar
  17. 17.
    I.M. Sokolov, Phys. Rev. Lett. 90, 080601 (2003)ADSCrossRefGoogle Scholar
  18. 18.
    A.E. Likthman, C.M. Marques, Europhys. Lett. 75, 971 (2006)MathSciNetADSCrossRefGoogle Scholar
  19. 19.
    S. Fugmann, I.M. Sokolov, J. Chem. Phys. 131, 235104 (2009)ADSCrossRefGoogle Scholar
  20. 20.
    E. Evans, K. Ritchie, Biophys. J. 72, 1541 (1997)CrossRefGoogle Scholar
  21. 21.
    S. Kumar, M.S. Li, Physics Reports 486, 1 (2010)ADSCrossRefGoogle Scholar
  22. 22.
    M. Urbakh, J. Klafter, D. Gourdon, J. Israelachvili, Nature 430, 525 (2004)ADSCrossRefGoogle Scholar
  23. 23.
    S. Sills, R.M. Overney, Phys. Rev. Lett. 91, 095501 (2003)ADSCrossRefGoogle Scholar
  24. 24.
    J.K. Dreyer, K. Berg-Sørensen, L. Oddershede, Phys. Rev. E 73, 051110 (2006)ADSCrossRefGoogle Scholar
  25. 25.
    A. Garg, Phys. Rev. B 51, 15592 (1995)ADSCrossRefGoogle Scholar
  26. 26.
    S. Fugmann, I.M. Sokolov. Phys. Rev. E 79, 021803 (2009)ADSGoogle Scholar
  27. 27.
    S. Fugmann, I.M. Sokolov, Europhys. Lett. 86, 28001 (2009)ADSCrossRefGoogle Scholar
  28. 28.
    D. Hennig, L. Schimansky-Geier, P. Hänggi, Europhys. Lett. 83, 60008 (2008)ADSCrossRefGoogle Scholar
  29. 29.
    C.R. Doering, J.C. Gadoua, Phys. Rev. Lett. 69, 2318 (1992)ADSCrossRefGoogle Scholar
  30. 30.
    J. Lehmann, P. Reimann, P. Hänggi, Phys. Rev. Lett. 84, 1639 (2000)ADSCrossRefGoogle Scholar
  31. 31.
    J. Lehmann, P. Reimann, P. Hänggi, Phys. Rev. E 62, 6282 (2000)ADSCrossRefGoogle Scholar
  32. 32.
    R.N. Mantegna, B. Spagnolo, Phys. Rev. Lett. 84, 3025 (2000)ADSCrossRefGoogle Scholar
  33. 33.
    P. Reimann, P. Hänggi, in Stochastic Dynamics, edited by L. Schimansky-Geier, Th. Pöschel, Lecture Notes in Physics 484, 127 (1997)Google Scholar
  34. 34.
    P. Pechukas, P. Hänggi, Phys. Rev. Lett. 73, 2772 (1994)ADSCrossRefGoogle Scholar
  35. 35.
    Y.S. Kivshar, Phys. Rev. E 48, 4132 (1993)MathSciNetADSCrossRefGoogle Scholar
  36. 36.
    I. Daumont, T. Dauxois, M. Peyrard, Nonlinearity 10, 617 (1997)zbMATHMathSciNetADSCrossRefGoogle Scholar
  37. 37.
    L.D. Landau, E.M. Lifshitz, Course of Theoretical Physics: Mechanics (Akademie-Verlag, Berlin, 1987)Google Scholar
  38. 38.
    D. Hennig, L. Schimansky-Geier, P. Hänggi, Europhys. Lett. 78, 20002 (2007)ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences and Springer 2011

Authors and Affiliations

  • S. Fugmann
    • 1
    Email author
  • D. Hennig
    • 2
  • L. Schimansky-Geier
    • 1
  • I.M. Sokolov
    • 1
  1. 1.Institut für Physik, Humboldt-Universität zu BerlinBerlinGermany
  2. 2.Department of MathematicsUniversity of PortsmouthPortsmouth PO1 3HFUK

Personalised recommendations