Advertisement

The European Physical Journal Special Topics

, Volume 191, Issue 1, pp 159–172 | Cite as

A model for oscillations and pattern formation in protoplasmic droplets of Physarum polycephalum

  • M. RadszuweitEmail author
  • H. EngelEmail author
  • M. BärEmail author
Regular article

Abstract.

A mechano-chemical model for the spatiotemporal dynamics of free calcium and the thickness in protoplasmic droplets of the true slime mold Physarum polycephalum is derived starting from a physiologically detailed description of intracellular calcium oscillations proposed by Smith and Saldana (Biopys. J. 61, 368 (1992)). First, we have modified the Smith-Saldana model for the temporal calcium dynamics in order to reproduce the experimentally observed phase relation between calcium and mechanical tension oscillations. Then, we formulate a model for spatiotemporal dynamics by adding spatial coupling in the form of calcium diffusion and advection due to calcium-dependent mechanical contraction. In another step, the resulting reaction-diffusion model with mechanical coupling is simplified to a reaction-diffusion model with global coupling that approximates the mechanical part. We perform a bifurcation analysis of the local dynamics and observe a Hopf bifurcation upon increase of a biochemical activity parameter. The corresponding reaction-diffusion model with global coupling shows regular and chaotic spatiotemporal behaviour for parameters with oscillatory dynamics. In addition, we show that the global coupling leads to a long-wavelength instability even for parameters where the local dynamics possesses a stable spatially homogeneous steady state. This instability causes standing waves with a wavelength of twice the system size in one dimension. Simulations of the model in two dimensions are found to exhibit defect-mediated turbulence as well as various types of spiral wave patterns in qualitative agreement with earlier experimental observation by Takagi and Ueda (Physica D, 237, 420 (2008)).

Keywords

European Physical Journal Special Topic Linear Stability Analysis Mechanical Part Spatiotemporal Dynamic Physarum Polycephalum 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R.D. Allen, W.R. Pitts Jr., D. Speir, J. Brault, Science 142, 1485 (1963)CrossRefADSGoogle Scholar
  2. 2.
    T. Ueda, M. Muratsugu, K. Kurihara, Y. Kobatake, Exp. Cell Res. 100, 337 (1976)CrossRefGoogle Scholar
  3. 3.
    M. Hato, T. Ueda, K. Kurihara, Y. Kobatake, Cell Struct. Funct. 1, 269 (1976)CrossRefGoogle Scholar
  4. 4.
    K. Matsumotoa, T. Ueda, Y. Kobatakea, J. Theor. Biol. 131, 175 (1988)CrossRefGoogle Scholar
  5. 5.
    K. Matsumotoa, T. Ueda, Y. Kobatakea, J. Theor. Biol. 122, 339 (1986)CrossRefGoogle Scholar
  6. 6.
    T. Nakagaki, H. Yamada, Á. Tóth, Science 407, 470 (2000)Google Scholar
  7. 7.
    W. Baumgarten, M.J.B. Hauser, JCIS 1, 241 (2010)Google Scholar
  8. 8.
    W. Baumgarten, T. Ueda, M.J.B. Hauser, Phys. Rev. E 82, 046113 (2010)CrossRefADSGoogle Scholar
  9. 9.
    T. Nakagaki, H. Yamada, T. Ueda, Biophys. Chem. 84, 195 (2000)CrossRefGoogle Scholar
  10. 10.
    A. Tero, et al., Science 327, 439 (2010)CrossRefMathSciNetADSGoogle Scholar
  11. 11.
    N. Kamiya, Proc. Japan Acad. 46, 1026 (1970)Google Scholar
  12. 12.
    G.F. Oster, G.M. Odell, Cell Mot. 4, 469 (1984)CrossRefGoogle Scholar
  13. 13.
    V.A. Teplov, Y.M. Romanovsky, O.A. Latushkin, Biosystems 24, 269 (1991)CrossRefGoogle Scholar
  14. 14.
    D.A. Smith, R. Saldana, Biophys. J. 61, 368 (1992)CrossRefADSGoogle Scholar
  15. 15.
    H. Yamada, T. Nakagaki, M. Ito, Phys. Rev. E 59, 1009 (1999)CrossRefADSGoogle Scholar
  16. 16.
    A. Tero, R. Kobayashi, T. Nakagaki, Physica D 205, 125 (2005)zbMATHCrossRefADSGoogle Scholar
  17. 17.
    R. Kobayashi, A. Tero, T. Nakagaki, J. Math. Biol. 53, 273 (2006)zbMATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    T. Nakagaki, H. Yamada, M. Ito, J. Theor. Biol. 197, 497 (1999)CrossRefGoogle Scholar
  19. 19.
    H. Yamada, T. Nakagaki, R.E. Baker, P.K. Maini, J. Math. Biol. 54, 745 (2007)zbMATHCrossRefMathSciNetGoogle Scholar
  20. 20.
    S. Takagi, T. Ueda, Physica D 237, 420 (2008)CrossRefADSGoogle Scholar
  21. 21.
    S. Takagi, T. Ueda, Physica D 239, 873 (2010)CrossRefADSGoogle Scholar
  22. 22.
    M. Bar, M. Hildebrand, M. Eiswirth, M. Falcke, H. Engel, M. Neufeld, Chaos 4, 499 (1994)CrossRefADSGoogle Scholar
  23. 23.
    F. Mertens, R. Imbihl, A. Mikhailov, J. Chem. Phys. 101, 9903 (1994)CrossRefADSGoogle Scholar
  24. 24.
    U. Middya, D. Luss, J. Chem. Phys. 102, 5029 (1994)CrossRefADSGoogle Scholar
  25. 25.
    A.V. Panfilov, R.H. Keldermann, M.P. Nash, Proc. Natl. Acad. Sci. USA 104, 7922 (2007)CrossRefADSGoogle Scholar
  26. 26.
    E. Alvarez-Lacalle, B. Echebarria, Phys. Rev. E 79, 031921 (2009)CrossRefMathSciNetADSGoogle Scholar
  27. 27.
    K. Matsumoto, S. Takagi, T. Nakagaki, Biophys. J. 94, 2492 (2008)CrossRefGoogle Scholar
  28. 28.
    W. Alt, M. Dembo, Math. Biosci. 156, 207 (1999)zbMATHCrossRefGoogle Scholar
  29. 29.
    A.F. Mak, J. Biomech. Eng. 108, 123 (1986)CrossRefGoogle Scholar
  30. 30.
    F. Guilak, M.A. Haider, L.A. Setton, T.A. Laursen, F.P.T. Baaijens, Cytosceletal Mechanics (Cambridge University Press, 2006), p. 84Google Scholar
  31. 31.
    G.F. Oster, G.M. Odell, Physica D 12, 333 (1984)zbMATHCrossRefMathSciNetADSGoogle Scholar
  32. 32.
    T. Nakagaki, R.D. Guy, Soft Matter 4, 57 (2008)CrossRefGoogle Scholar
  33. 33.
    R.S. Rivlin, Phil. Trans. R. Soc. Lond. 241, 379 (1948)zbMATHCrossRefMathSciNetADSGoogle Scholar
  34. 34.
    Y. Maday, A.T. Patera, E.M. Rø nquist, J. Sci. Comput. 5, 263 (1990)zbMATHCrossRefMathSciNetGoogle Scholar
  35. 35.
    John C. Butcher, Numerical methods for ordinary differential equations (John Wiley & Sons, 2003)Google Scholar
  36. 36.
    J.R. Shewchuk, Comput. Geom. 22, 21 (2002)zbMATHCrossRefMathSciNetGoogle Scholar
  37. 37.
    J.R. Shewchuk, An Introduction to the Conjugate Gradient Method Without the Agonizing Pain (School for Computer Science, Carnegie Mellon University Pittsburgh, 1994), http://www.cs.cmu.edu/ quake-papers/painless-conjugate-gradient.pdfGoogle Scholar
  38. 38.
    N. Kamiya, W. Seifritz, Exp. Cell Res. 6, 1 (1954)CrossRefGoogle Scholar

Copyright information

© EDP Sciences and Springer 2011

Authors and Affiliations

  1. 1.Physikalisch-Technische Bundesanstalt, Department for Mathematical Modelling and Data AnalysisBerlinGermany
  2. 2.Technische Universität Berlin, Institute for Theoretical PhysicsBerlinGermany

Personalised recommendations