Advertisement

The European Physical Journal Special Topics

, Volume 191, Issue 1, pp 147–158 | Cite as

Filament capping and nucleation in actin-based motility

  • M. FaberEmail author
  • M. Enculescu
  • M. Falcke
Regular article

Abstract.

Propulsion by actin polymerization is versatilely used in cell motility. Here, we investigate a model of the semi-flexible region of an actin gel close to a propelled object describing the force generation, the dynamics of the propagation velocity, filament attachment to and detachment from the obstacle surface and dynamics of the number of filaments, which result from filament nucleation and capping. The model equations are derived as moment equations of the length distributions. We find a variety of dynamic regimes. The filament number may respond very sensitively to small changes of the attachment rate.

Keywords

European Physical Journal Special Topic Lipid Vesicle Dynamic Regime Moment Equation Contour Length 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    B. Alberts, D. Bray, J. Lewis, M. Raff, K. Roberts, J.D. Watson, Molecular Biology of the Cell, 3rd ed. (Garland Publishing, Inc., New York & London, 1994)Google Scholar
  2. 2.
    J.E. Bear, T.M. Svitkina, M. Krause, D.A. Schafer, J.J. Loureiro, G.A. Strasser, I.V. Maly, O.Y. Chaga, J.A. Cooper, G.G. Borisy, F.B. Gertler, Cell 109, 509 (2002)CrossRefGoogle Scholar
  3. 3.
    A. Bernheim-Groswasser, J. Prost, C. Sykes, Biophys. J. 89, 1411 (2005)CrossRefGoogle Scholar
  4. 4.
    D. Bray, Cell movements, 2nd ed. (Garland, New York, 2001)Google Scholar
  5. 5.
    M.F. Carlier, D. Pantaloni, J. Biol. Chem. 282, 23005 (2007)CrossRefGoogle Scholar
  6. 6.
    H.-G. Döbereiner, B.J. Dubin-Thaler, J.M. Hofman, H.S. Xenias, T.N. Sims, G. Giannone, M.L. Dustin, C.H. Wiggins, M.P. Sheetz, Phys. Rev. Lett. 97, 038102 (2006)CrossRefADSGoogle Scholar
  7. 7.
    M. Enculescu, M. Falcke (submitted)Google Scholar
  8. 8.
    M. Enculescu, A. Gholami, M. Falcke, Phys. Rev. E (Statistical, Nonlinear, and Soft Matter Physics) 78, 031915 (2008)CrossRefMathSciNetADSGoogle Scholar
  9. 9.
    M. Enculescu, M. Sabouri-Ghomi, G. Danuser, M. Falcke, Biophys. J. 98, 1571 (2010)CrossRefADSGoogle Scholar
  10. 10.
    F. Gerbal, P. Chaikin, Y. Rabin, J. Prost, Biophys. J. 79, 2259 (2000)CrossRefGoogle Scholar
  11. 11.
    A. Gholami, M. Falcke, E. Frey, New J. Phys. 10, 033022 (2008)CrossRefGoogle Scholar
  12. 12.
    A. Gholami, J. Wilhelm, E. Frey, Phys. Rev. E 74, 041803 (2006)CrossRefADSGoogle Scholar
  13. 13.
    E. Gouin, M.D. Welch, P. Cossart, Curr. Opinion Microbiol. 8, 35 (2005)CrossRefGoogle Scholar
  14. 14.
    K. Kroy, Viskoelastizität von lösungen halbsteifer polymere (Hieronymus, München , 1998)Google Scholar
  15. 15.
    K. Kroy, E. Frey, Phys. Rev. Lett. 77, 306 (1996)CrossRefADSGoogle Scholar
  16. 16.
    I. Lasa, E. Gouin, M. Goethals, K. Vancompernollel, V. David, J. Vandekerckhovel, P. Cossart, EMBO J. 16, 1531 (1997)CrossRefGoogle Scholar
  17. 17.
    T.P. Loisel, R. Boujemaa, D. Pantaloni, M.-F. Carlier, Nature 401, 613 (1999)CrossRefADSGoogle Scholar
  18. 18.
    M. Machacek, G. Danuser, Biophys. J. 90, 1439 (2006)CrossRefADSGoogle Scholar
  19. 19.
    Y. Marcy, J. Prost, M.-F. Carlier, C. Sykes, Proc. National Acad. Sci. United States Amer. 101, 5992 (2004)CrossRefADSGoogle Scholar
  20. 20.
    A. Mogilner, G. Oster, Biophys. J. 71, 3030 (1996)CrossRefADSGoogle Scholar
  21. 21.
    A. Mogilner, G. Oster, Biophys. J. 84, 1591 (2003)CrossRefADSGoogle Scholar
  22. 22.
    S.H. Parekh, O. Chaudhuri, J.A. Theriot, D.A. Fletcher, Nat. Cell Biol. 7, 1219 (2005)CrossRefGoogle Scholar
  23. 23.
    J. Plastino, C. Sykes, Curr. Opinion Cell Biol. 17, 62 (2005)CrossRefGoogle Scholar
  24. 24.
    T.D. Pollard, G.G. Borisy, Cell 112, 453 (2003)CrossRefGoogle Scholar
  25. 25.
    A. Ponti, M. Machacek, S.L. Gupton, C.M. Waterman-Storer, G. Danuser, Science 305, 1782 (2004)CrossRefADSGoogle Scholar
  26. 26.
    T.M. Svitkina, A.B. Verkhovsky, K.M. McQuade, G.G. Borisy, J. Cell Biology 139, 397 (1997)CrossRefGoogle Scholar
  27. 27.
    L. Trichet, O. Campàs, C. Sykes, J. Plastino, Biophys. J. 92, 1081 (2007)CrossRefADSGoogle Scholar
  28. 28.
    P. Vallotton, G. Danuser, S. Bohnet, J.-J. Meister, A.B. Verkhovsky, Mol. Biol. Cell 16, 1223 (2005)CrossRefGoogle Scholar
  29. 29.
    J. Zimmermann, M. Enculescu, M. Falcke, Phys. Rev. E 82, 051925 (2010)CrossRefADSGoogle Scholar
  30. 30.
    A. Zumdieck, M.C. Lagomarsino, C. Tanase, K. Kruse, B. Mulder, M. Dogterom, F. Jülicher, Phys. Rev. Lett. 95, 258103 (2005)CrossRefADSGoogle Scholar

Copyright information

© EDP Sciences and Springer 2011

Authors and Affiliations

  1. 1.Mathematical Cell Physiology, Max Delbrück Center for Molecular MedicineBerlinGermany
  2. 2.Institute for Theoretical Physics, Technische UniversitätBerlinGermany

Personalised recommendations