Advertisement

The European Physical Journal Special Topics

, Volume 191, Issue 1, pp 131–145 | Cite as

Self-organization processes at active interfaces

  • S. Alonso
  • H.-Y. Chen
  • M. Bär
  • A.S. MikhailovEmail author
Minireview

Abstract.

Four examples for active processes at interfaces are studied and reveal complex pattern formation phenomena including complex defect dynamics, standing waves and turbulence, bistability and domain formation and Turing patterns. The examples studied range from active Langmuir monolayers to thin films with floating molecular machines and biomembranes with active proteins. It is shown that linear stability analysis and numerical simulations of the resulting continuum model equations allow to qualitatively reproduce previous experimental observation in some cases and offer intriguing predictions for future investigations in the laboratory.

Keywords

European Physical Journal Special Topic Detailed Balance Molecular Machine Chiral Molecule Langmuir Monolayer 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A.M. Turing, Philos. Trans. Roy. Soc. Lond. B 237, 37 (1952)CrossRefADSGoogle Scholar
  2. 2.
    G. Nicolis, I. Prigogine, Self-Organization in Nonequilibrium Systems (Wiley, New York, 1977)Google Scholar
  3. 3.
    Y. Kuramoto, Chemical Oscillations, Waves and Turbulence (Springer, Berlin 1984)Google Scholar
  4. 4.
    W. Helfrich, Z. Naturforsch. 28c, 693 (1973)Google Scholar
  5. 5.
    U. Seifert, Adv. Phys. 46, 13 (1997)CrossRefADSGoogle Scholar
  6. 6.
    V.M. Kaganer, H. Möhwald, P. Dutta, Rev. Mod. Phys. 71, 779 (1999)CrossRefADSGoogle Scholar
  7. 7.
    M. Seul, D. Andelman, Science 267, 476 (1995)CrossRefADSGoogle Scholar
  8. 8.
    P.-G. De Gennes, Simple Views on Condensed Matter (World Scientific, Singapore, 2003)Google Scholar
  9. 9.
    M. Hildebrand, A.S. Mikhailov, J. Phys. Chem. 100, 19089 (1996)CrossRefGoogle Scholar
  10. 10.
    S.C. Glotzer, E.A. DiMarzio, M. Muthukumar, Phys. Rev. Lett. 75, 1674 (1995)CrossRefGoogle Scholar
  11. 11.
    M. Motoyama, T. Ohta, J. Phys. Soc. Jpn, 66, 2715 (1997)CrossRefADSGoogle Scholar
  12. 12.
    J. Prost, R. Bruinsma, Europhys. Lett. 33, 321 (1996)CrossRefADSGoogle Scholar
  13. 13.
    B. Rozycki, R. Lipowsky, T.R. Weikl, Phys. Rev. Lett. 96, 048101 (2006)CrossRefADSGoogle Scholar
  14. 14.
    S. Ramaswamy, J. Toner, J. Prost, Phys. Rev. Lett. 84, 3494 (2000)CrossRefADSGoogle Scholar
  15. 15.
    A.S. Mikhailov, G. Ertl, Science 272, 1596 (1996)CrossRefADSGoogle Scholar
  16. 16.
    A.S. Mikhailov, G. Ertl, Chem. Phys. Chem. 10, 86 (2009)Google Scholar
  17. 17.
    Y. Tabe, H. Yokoyama, Langmuir 11, 4609 (1995)CrossRefGoogle Scholar
  18. 18.
    Y. Tabe, H. Yokoyama, New J. Phys. 5, 65 (2003)CrossRefADSGoogle Scholar
  19. 19.
    R. Reigada, F. Sagués, A.S. Mikhailov, Phys. Rev. Lett. 89, 038301 (2002)CrossRefADSGoogle Scholar
  20. 20.
    R. Reigada, A.S. Mikhailov, F. Sagués, Phys. Rev. E 69, 041103 (2003)CrossRefADSGoogle Scholar
  21. 21.
    T. Okuzono, Y. Tabe, H. Yokoyama, Phys. Rev. E 69, 050701 (2004)CrossRefADSGoogle Scholar
  22. 22.
    Y. Tabe, H. Yokoyama, Nat. Mater. 2, 806 (2003)CrossRefADSGoogle Scholar
  23. 23.
    T. Shibata, A.S. Mikhailov, Europhys. Lett. 73, 436 (2006)CrossRefADSGoogle Scholar
  24. 24.
    T. Shibata, A.S. Mikhailov, Chaos 16, 037108 (2006)CrossRefADSGoogle Scholar
  25. 25.
    Y. Tsori, P.-G. de Gennes, Eur. Phys. J. E 14, 91 (2004)CrossRefGoogle Scholar
  26. 26.
    O. Rudzick, A.S. Mikhailov (to be published)Google Scholar
  27. 27.
    E.R. Kay, D.A. Leigh, F. Zerbetto, Angew. Chem. Int. Ed. 46, 72 (2007)CrossRefGoogle Scholar
  28. 28.
    E.M. Purcell, Amer. J. Phys. 45, 3 (1977)CrossRefADSGoogle Scholar
  29. 29.
    A. Oron, S.H. Davis, S.G. Bankoff, Rev. Mod. Phys. 69, 931 (1997)CrossRefADSGoogle Scholar
  30. 30.
    S. Alonso, A.S. Mikhailov, Phys. Rev. E 79, 061906 (2009)CrossRefADSGoogle Scholar
  31. 31.
    S. Sankararaman, G.I. Menon, P.B. Sunil Kumar, Phys. Rev. E 66, 031914 (2002)CrossRefADSGoogle Scholar
  32. 32.
    J.-B. Manneville, P. Bassereau, S. Ramaswamy, J. Prost, Phys. Rev. E 64, 021908 (2001)CrossRefADSGoogle Scholar
  33. 33.
    P. Girard, J. Prost, P. Bassereau, Phys. Rev. Lett. 94, 088102 (2005)CrossRefADSGoogle Scholar
  34. 34.
    M.D. El Alaoui Faris, D. Lacoste, J. Pécréaux, J-F. Joanny, J. Prost, P. Bassereau, Phys. Rev. Lett. 102, 038102 (2009)CrossRefADSGoogle Scholar
  35. 35.
    H.-Y. Chen, Phys. Rev. Lett. 92, 168101 (2004)CrossRefADSGoogle Scholar
  36. 36.
    C.-H. Chen, H-Y. Chen, Phys. Rev. E 74, 051917 (2006)CrossRefADSGoogle Scholar
  37. 37.
    H.-Y. Chen, A.S. Mikhailov, Phys. Rev. E 81, 031901 (2010)CrossRefADSGoogle Scholar
  38. 38.
    S. McLaughlin, D. Murray, Nature 438, 605 (2005)CrossRefADSGoogle Scholar
  39. 39.
    S. Alonso, U. Dietrich, C. Händel, J.A. Käs, M. Bär, Biophysical J. (in press), doi: 10.1016/j.bpj.2010.12.3702 (2011)Google Scholar
  40. 40.
    T. Laux, K. Fukami, M. Thelen, T. Golub, D. Frey, P. Caroni, J. Cell Biol. 149, 1455 (2000)CrossRefGoogle Scholar
  41. 41.
    M. Thelen, A. Rosen, A.C. Nairn, A. Anderem, Nature 351, 320 (1991)CrossRefADSGoogle Scholar
  42. 42.
    G.M. Verghese, J.D. Johnson, C. Vasulka, D.M. Haupt, D.J. Stumpo, P.J. Blackshear, J. Biol. Chem. 269, 9361 (1994)Google Scholar
  43. 43.
    K. John, M. Bär, Phys. Rev. Lett. 95, 198101 (2005)CrossRefADSGoogle Scholar
  44. 44.
    S. Alonso, M. Bär, Phys. Biol. 7, 046012 (2010)CrossRefADSGoogle Scholar
  45. 45.
    K. John, M. Bär, Phys. Biol. 2, 123 (2005)CrossRefADSGoogle Scholar
  46. 46.
    A.S. Mikhailov, Foundations of Synergetics I (Springer, Berlin, 1994)Google Scholar

Copyright information

© EDP Sciences and Springer 2011

Authors and Affiliations

  • S. Alonso
    • 1
  • H.-Y. Chen
    • 2
  • M. Bär
    • 1
  • A.S. Mikhailov
    • 3
    Email author
  1. 1.Physikalisch-Technische BundesanstaltBerlinGermany
  2. 2.Department of Physics and Institute of BiophysicsNational Central UniversityJhongliTaiwan
  3. 3.Abteilung Physikalische Chemie, Fritz-Haber-Institut der Max-Planck-GesellschaftBerlinGermany

Personalised recommendations