Advertisement

The European Physical Journal Special Topics

, Volume 191, Issue 1, pp 105–115 | Cite as

Steady-state solutions of rupture propagation in an earthquake simulator governed by rate and state dependent friction

  • G. ZöllerEmail author
  • S. Hainzl
  • M. Holschneider
  • G.B. Brietzke
Regular article
  • 51 Downloads

Abstract.

Earthquake simulators become increasingly important with respect to seismic hazard assessment. It is, therefore, a crucial question whether the imposed simplifications, e.g. reducing fully dynamic to quasi-dynamic rupture propagation, may lead to unrealistic results. In the present study, we focus on the role of rupture velocity v r in an earthquake simulator governed by rate-and-state dependent friction as proposed by [8]. In particular, we investigate the range of possible values of v r within the model. As an end-member scenario, we consider the existence of a steady-state solution of a one-dimensional rupture front propagating with v r on an idealized two-dimensional fault of infinite dimension discretized into uniform cells. We find that, in principle, values of v r between 0 and ∞ are possible depending on the values of slip speed δ0 and pre-stress τ0 ahead of the rupture front. In this view, values of δ0 close to the slip speed during an earthquake δ EQ lead to small values of the time-to-failure and can thus generate ruptures with unrealistic high values of v r , if the model is close to the steady-state conditions. These results are useful to provide constraints for the parameter space of a reasonable earthquake simulator.

Keywords

European Physical Journal Special Topic Seismic Hazard Assessment Rupture Velocity Rupture Propagation Earthquake Simulator 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    P. Bak, C. Tang, Geophys. Res. Lett. 94, 15635 (1989)CrossRefGoogle Scholar
  2. 2.
    Y. Ben-Zion, J. Mech. Phys. Solids 49, 2209 (2001)CrossRefADSzbMATHGoogle Scholar
  3. 3.
    Y. Ben-Zion, J.R. Rice, J. Geophys. Res. 98, 14109 (1993)CrossRefADSGoogle Scholar
  4. 4.
    G. Brietzke, A. Cochard, H. Igel, Geophys. Res. Lett. 34, L11305 (2007)CrossRefADSGoogle Scholar
  5. 5.
    J.H. Dieterich, Mechanical Behavior of Crustal Rocks, Geophys. Monogr. Ser. (AGU, Washington, D.C., 1981), p. 103Google Scholar
  6. 6.
    J.H. Dieterich, Tectonophys. 211, 115 (1992)CrossRefGoogle Scholar
  7. 7.
    J.H. Dieterich, J. Geophys. Res. 99, 2601 (1994)CrossRefADSGoogle Scholar
  8. 8.
    J.H. Dieterich, Nonlin. Proc. Geophys. 2, 109 (1995)CrossRefADSGoogle Scholar
  9. 9.
    J.H. Dieterich, Treatise in Geophysics 4, 107 (2007)CrossRefGoogle Scholar
  10. 10.
    B. Gutenberg, C. Richter, Bull. Seism. Soc. Am. 46, 105 (1956)Google Scholar
  11. 11.
    S. Hainzl, G. Zöller, R. Wang, J. Geophys. Res. 115, B05315 (2010)CrossRefGoogle Scholar
  12. 12.
    M. Matthews, W. Ellsworth, P. Reasenberg, Bull. Seism. Soc. Am. 92, 2233 (2002)CrossRefGoogle Scholar
  13. 13.
    Y. Ogata, J. Am. Stat. Assoc. 83, 9 (1988)CrossRefGoogle Scholar
  14. 14.
    Y. Okada, Bull. Seism. Soc. Am. 82, 1018 (1992)Google Scholar
  15. 15.
    F. Omori, J. Coll. Sci. Imp. Univ. Tokyo 7, 111 (1894)Google Scholar
  16. 16.
    A.L. Ruina, J. Geophys. Res. 88, 10359 (1983)CrossRefADSGoogle Scholar
  17. 17.
    P.B. Rundle, J.B. Rundle, K.F. Tiampo, A. Donnellan, D.L. Turcotte, Pure Appl. Geophys. 163, 1819 (2007)CrossRefADSGoogle Scholar
  18. 18.
    D.E. Smith, J.H. Dieterich, Pure Appl. Geophys. (2010), doi: 10.1007/s00024-010-0093-1Google Scholar
  19. 19.
    D. Vere-Jones, J. Phys. Earth 26, 129 (1978)Google Scholar
  20. 20.
    G. Zöller, S. Hainzl, M. Holschneider, Bull. Seism. Soc. Am. 98, 2641 (2008)CrossRefGoogle Scholar
  21. 21.
    G. Zöller, M. Holschneider, Y. Ben-Zion, Pure Appl. Geophys. 161, 2103 (2004)CrossRefADSGoogle Scholar

Copyright information

© EDP Sciences and Springer 2011

Authors and Affiliations

  • G. Zöller
    • 1
    Email author
  • S. Hainzl
    • 2
  • M. Holschneider
    • 1
  • G.B. Brietzke
    • 2
  1. 1.Institute of MathematicsPotsdamGermany
  2. 2.Deutsches GeoForschungsZentrum PotsdamPotsdamGermany

Personalised recommendations