Advertisement

The European Physical Journal Special Topics

, Volume 189, Issue 1, pp 239–249 | Cite as

Size-dependent freezing of n-alcohols in silicon nanochannels

  • R. Berwanger
  • Ch. Schumacher
  • P. Huber
  • R. PelsterEmail author
Regular Article

Abstract.

We present a study on the phase behavior of several linear n-alcohols (heptanol, nonanol and undecanol) in their bulk state as well as confined in mesoporous silicon. We were able to vary the mean pore radii of the nanochannels from r = 3.5  nm to 7 nm and to determine the respective temperatures of the freezing and melting transitions using infrared and dielectric spectroscopy. The smaller the chain length the lower the freezing point, both in the bulk and in the confined state. Under confinement the freezing temperature decreases by up to 28 K compared to the bulk value. In accordance with the Gibbs-Thompson model the lowering is proportional to the inverse pore radius, ΔT fr ∝ 1/r. Moreover, the ratio of freezing temperature depression to melting temperature depression is close to the theoretical value of ΔT fr T melt = 3/2. The spectra also indicate a structural change: while the solid bulk alcohols are a polycrystalline mixture of the orthorhombic β- and monoclinic γ-form, geometrical confinement forces the alcohol-chains into the more simple orthorhombic structure. In addition, a part of the material does not crystallize. Such an additional amorphous phase seems to be a logical consequence of the size mismatch between molecular crystals and irregular shaped pores.

Keywords

European Physical Journal Special Topic Pore Radius Freezing Temperature Molecular Crystal Bulk State 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    L.D. Gelb, K.E. Gubbins, R. Radhakrishnan, M. Sliwinska-Bartkowiak, Rep. Prog. Phys. 62, 1573 (1999)CrossRefADSGoogle Scholar
  2. 2.
    C. Alba-Simionesco, B. Coasne, G. Dosseh, G. Dudziak, K.E. Gubbins, R. Radhakrishnan, M.G. Sliwinska-Bartkowiak, J. Phys. Condens. Mat. 18, R15 (2006)CrossRefADSGoogle Scholar
  3. 3.
    H.K. Christenson, J. Phys. Condens. Mat. 13, R95 (2001)CrossRefADSGoogle Scholar
  4. 4.
    K. Knorr, P. Huber, D. Wallacher, Z. Phys. Chem. 222, 257 (2008)Google Scholar
  5. 5.
    K. Schappert, R. Pelster, Phys. Rev. B 78, 174108 (2008)CrossRefADSGoogle Scholar
  6. 6.
    J. Koppensteiner, W. Schranz, M.R. Puica, Phys. Rev. B 78, 054203 (2008)CrossRefADSGoogle Scholar
  7. 7.
    P. Scheidler, W. Kob, K. Binder, Europhys. Lett. 52, 277 (2000)CrossRefADSGoogle Scholar
  8. 8.
    F. Kremer, A. Huwe, M. Arndt, P. Behrens, W. Schwieger, J. Phys. Condens. Matter 11, A175 (1999)CrossRefADSGoogle Scholar
  9. 9.
    C.L. Jackson, G.B. McKenna, J. Non-Cryst. Solids 131-133, 221 (1991)CrossRefADSGoogle Scholar
  10. 10.
    G. Barut, P. Pissis, R. Pelster, G. Nimtz, Phys. Rev. Lett. 80, 3543 (1998)CrossRefADSGoogle Scholar
  11. 11.
    R. Pelster, Phys. Rev. B 59, 9214 (1999)CrossRefMathSciNetADSGoogle Scholar
  12. 12.
    D. Daoukaki, G. Barut, R. Pelster, G. Nimtz, A. Kyritsis, P. Pissis, Phys. Rev. B 58, 5336 (1998)CrossRefADSGoogle Scholar
  13. 13.
    P. Pissis, A. Kyritsis, D. Daoukaki, G. Barut, R. Pelster, G. Nimtz, J. Phys. Condens. Matter 10, 6205 (1998)CrossRefADSGoogle Scholar
  14. 14.
    P. Pissis, A. Kyritsis, G. Barut, R. Pelster, G. Nimtz, Jrl. Non-Cryst. Solids 235237, 444 (1998)CrossRefGoogle Scholar
  15. 15.
    W. Schranz, M.R. Puica, J. Koppensteiner, H. Kabelka, A.V. Kityk, Europhys. Lett. 79, 36003 (2007)CrossRefADSGoogle Scholar
  16. 16.
    B. Frick, M. Koza, R. Zorn, Eur. Phys. J. E 12, 3 (2003)CrossRefGoogle Scholar
  17. 17.
    A. Henschel, K. Knorr, P. Huber, Phil. Mag. Lett. 90, 481 (2010)CrossRefADSGoogle Scholar
  18. 18.
    P. Huber, V.P. Soprunyuk, K. Knorr, Phys. Rev. E 74, 031610 (2006)CrossRefADSGoogle Scholar
  19. 19.
    R. Montenegro, K. Landfester, Langmuir 19, 5996 (2003)CrossRefGoogle Scholar
  20. 20.
    B. Xie, G. Liu, S. Jiang, Y. Zhao, D. Wang, J. Phys. Chem. B 112, 13310 (2008)CrossRefGoogle Scholar
  21. 21.
    R. Valiullin, A. Khokhlov, Phys. Rev. E 73, 051605 (2006)CrossRefADSGoogle Scholar
  22. 22.
    G. Crawford, S. Zumer (eds.), Liquid Crystals in Complex Geometries (Taylor and Francis, London, 1996)Google Scholar
  23. 23.
    A.V. Kityk, M. Wolff, K. Knorr, D. Morineau, R. Lefort, P. Huber, Phys. Rev. Lett. 101, 187801 (2008)CrossRefADSGoogle Scholar
  24. 24.
    P. Huber, D. Wallacher, J. Albers, K. Knorr, Europhys. Lett. 65, 351 (2004)CrossRefADSGoogle Scholar
  25. 25.
    A. Henschel, T. Hofmann, P. Huber, K. Knorr, Phys. Rev. E 75, 021607 (2007)CrossRefADSGoogle Scholar
  26. 26.
    R. Berwanger, A. Henschel, K. Knorr, P. Huber, R. Pelster, Phys. Rev. B 79, 125442 (2009)CrossRefADSGoogle Scholar
  27. 27.
    Rene Berwanger, Ph.D. thesis, Saarland University (in preparation)Google Scholar
  28. 28.
    V. Lehmann, U. Gösele, Appl. Phys. Lett. 58, 856 (1991)CrossRefADSGoogle Scholar
  29. 29.
    V. Lehmann, R. Stengl, A. Luigart, Mater. Sci. Eng. B 69-70, 11 (2000)CrossRefGoogle Scholar
  30. 30.
    X.G. Zhang, J. Electrochem. Soc. 151, C69 (2004)CrossRefGoogle Scholar
  31. 31.
    A.G. Cullis, L.T. Canham, P.D.J. Calcott, J. Appl. Phys. 82, 909 (1997)CrossRefADSGoogle Scholar
  32. 32.
    S. Gruener, P. Huber, Phys. Rev. Lett. 100, 064502 (2008)CrossRefADSGoogle Scholar
  33. 33.
    P. Huber, S. Gruener, C. Schaefer, K. Knorr, A.V. Kityk, Eur. Phys. J. Special Topics 141, 101 (2007)CrossRefGoogle Scholar
  34. 34.
    R. Pelster, IEEE Trans. Microw. Theory Techn. 43, 1494 (1995)CrossRefADSGoogle Scholar
  35. 35.
    M. Tasumi, T. Shimanouchi, A. Watanabe, R. Goto, Spectrochim. Acta 20, 629 (1964)CrossRefADSGoogle Scholar
  36. 36.
    L. Ventola, M. Ramirez, T. Calvet, X.Solans, M.A. Cuevas-Diarte, P. Negrier, D. Mondieig, J.C. van Miltenburg, H.A.J. Oonk, Chem. Mater. 14, 508 (2002)CrossRefGoogle Scholar
  37. 37.
    E.B. Sirota, X.Z. Wu, J. Chem. Phys. 105, 7763 (1996)CrossRefADSGoogle Scholar
  38. 38.
    A. Watanabe, Bull. Chem. Soc. Jpn. 36, 336 (1963)CrossRefGoogle Scholar
  39. 39.
    J. Sun, S.L. Simon, Thermochim. Acta 463, 32 (2007)CrossRefGoogle Scholar
  40. 40.
    K. Morishige, K. Kawano, J. Chem. Phys. 112, 11023 (2000)CrossRefADSGoogle Scholar
  41. 41.
    H. Sackmann, F. Sauerwald, Z. Phys. Chem. (Leipzig) 195, 295 (1950)Google Scholar
  42. 42.
    F.R. McKenna, H.V. Tartar, E.C. Lingfelter, J. Am. Chem. Soc. 71, 729 (1949)CrossRefGoogle Scholar

Copyright information

© EDP Sciences and Springer 2010

Authors and Affiliations

  • R. Berwanger
    • 1
  • Ch. Schumacher
    • 1
  • P. Huber
    • 1
  • R. Pelster
    • 1
    Email author
  1. 1.Universität des Saarlandes, FR 7.2 ExperimentalphysikSaarbrückenGermany

Personalised recommendations