The European Physical Journal Special Topics

, Volume 189, Issue 1, pp 181–186 | Cite as

Dynamics in ultrathin liquid films studied by simultaneous dielectric spectroscopy (DRS) and organic molecular beam deposition (OMBD)

  • M. Wübbenhorst
  • S. Capponi
  • S. Napolitano
  • S. Rozanski
  • G. Couderc
  • N.-R. Behrnd
  • J. Hulliger
Regular Article


Real-time dielectric relaxation spectroscopy for a molecular beam deposited glass forming liquids is proposed as a versatile approach for the study of the dynamic glass transition in geometric confinement. To achieve the highest sensitivity down to monomolecular organic layers in a wide frequency range (0.1–107  Hz) during simultaneous deposition and desorption, we have used μm spaced interdigitated electrodes under ultrahigh vacuum conditions. Experiments using glycerol deposited on fused silica at − 40  C revealed a dielectric glass transition process for a layer thickness as low as 0.7 nm. While its peak position hardly changes upon thickness reduction, a clear broadening is observed that implies an increasing heterogeneous mobility scenario for the thinnest films caused by molecules being part of a reduced (at the substrate) or enhanced (free surface) mobility layer. This finding is supported by desorption experiments that reveal a strong retardation of the desorption rate for films below 1 nm.


European Physical Journal Special Topic Quartz Crystal Microbalance Quartz Crystal Microbalance Sensor Mobility Layer Dynamic Glass Transition 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J. Mattsson, J.A. Forrest, L. Borjesson, Phys. Rev. E 62, 5187 (2000)CrossRefADSGoogle Scholar
  2. 2.
    S. Napolitano, A. Pilleri, P.A. Rolla, M. Wübbenhorst, ACS Nano 4, 841 (2010)CrossRefGoogle Scholar
  3. 3.
    C.B. Roth, J.R. Dutcher, J. Electroanal. Chem. 584, 13 (2005)CrossRefGoogle Scholar
  4. 4.
    P. Pissis, D. Daoukakidiamanti, L. Aspekis, C. Christodoulides, J. Phys. Cond. Mat. 6, L325 (1994)CrossRefADSGoogle Scholar
  5. 5.
    J. Zhang, G. Liu, J. Jonas, J. Phys. Chem. 96, 3478 (1999)CrossRefGoogle Scholar
  6. 6.
    M. Arndt, R. Stannarius, H. Groothues, E. Hempel, F. Kremer, Phys. Rev. Lett. 79, 2077 (1997)CrossRefADSGoogle Scholar
  7. 7.
    M. Wübbenhorst, G.J. Klap, J.C. Jansen, H. van Bekkum, J. van Turnhout, J. Chem. Phys. 111, 5637 (1999)CrossRefADSGoogle Scholar
  8. 8.
    G. Barut, P. Pissis, R. Pelster, G. Nimtz, Phys. Rev. Lett. 80, 3543 (1998)CrossRefADSGoogle Scholar
  9. 9.
    E. Hempel, S. Vieweg, A. Huwe, K. Otto, C. Schick, E. Donth, J. Phys. IV (France) 10, 79 (2000)Google Scholar
  10. 10.
    A. Quintel, F. Budde, P. Rechsteiner, K. Thoma, A. Zayats, J. Hulliger, J. Mater. Chem. 10, 27 (2000)CrossRefGoogle Scholar
  11. 11.
    J.T. Jayne, S.X. Duan, P. Davidovits, D.R. Worsnop, M.S. Zahniser, C.E. Kolb, J. Phys. Chem. 95, 6329 (1991)CrossRefGoogle Scholar
  12. 12.
    W. Olthuis, A.J. Sprenkels, J.G. Bomer, P. Bergveld, Sensors Actuat. B-Chem. 43, 211 (1997)CrossRefGoogle Scholar
  13. 13.
    M. Wübbenhorst, J. van Turnhout, L. Alili, Ferroelectrics 165, 153 (1995)CrossRefGoogle Scholar
  14. 14.
    M.C. Scott, D.R. Stevens, J.R. Bochinski, L.I. Clarke, ACS Nano 2, 2392 (2008)CrossRefGoogle Scholar
  15. 15.
    The analysis of the slow relaxation process using a simple model for electrode polarization (see e.g. [16]) yielded a Debye length of about 1 μm, providing strong evidence for our assignment of the slow relaxation process to EP. A more detailed study of this phenomenon is in progress.Google Scholar
  16. 16.
    R. Coelho, J. Non-Cryst. Solids 131133, 1136 (1991)CrossRefADSGoogle Scholar
  17. 17.
    M. Wübbenhorst, J. van Turnhout, J. Non-Cryst. Solids 305, 40 (2002)CrossRefGoogle Scholar
  18. 18.
    C. Rotella, S. Napolitano, M. Wübbenhorst, Macromolecules 42, 1415 (2009)CrossRefADSGoogle Scholar
  19. 19.
    S. Napolitano, V. Lupascu, M. Wübbenhorst, Macromolecules 41, 1061 (2008)CrossRefADSGoogle Scholar

Copyright information

© EDP Sciences and Springer 2010

Authors and Affiliations

  • M. Wübbenhorst
    • 1
  • S. Capponi
    • 1
  • S. Napolitano
    • 1
  • S. Rozanski
    • 1
  • G. Couderc
    • 2
  • N.-R. Behrnd
    • 2
  • J. Hulliger
    • 2
  1. 1.Department of Physics and AstronomyKatholieke Universiteit LeuvenLeuvenBelgium
  2. 2.Department of Chemistry and BiochemistryUniversity of BerneBerneSwitzerland

Personalised recommendations