Advertisement

The European Physical Journal Special Topics

, Volume 189, Issue 1, pp 37–46 | Cite as

Dielectric spectroscopy and dynamics in confinement

  • R. Richert
Review

Abstract.

There are numerous reasons, such as frequency range and sensitivity, to employ dielectric spectroscopy for investigating how confinement alters the dynamics of liquids, supercooled liquids, or polymers. However, care has to be taken to account for the fact that the sample is a heterogeneous dielectric, i.e. a mixture of the confining matrix material and the liquid filler whose dynamics are of interest. Since dielectric permittivity is not an additive quantity, extracting the dynamics of the filler can be complicated or even impossible, and the Maxwell-Wagner relations will not always solve the problem. Some guidelines on how to interpret dielectric data on confined systems will be presented.

Keywords

Dielectric Loss Dielectric Spectroscopy Dielectric Permittivity European Physical Journal Special Topic Dielectric Relaxation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Broadband Dielectric Spectroscopy, edited by F. Kremer, A. Schönhals (Springer, Berlin, 2002)Google Scholar
  2. 2.
    R. Richert, Physica A 287, 26 (2000)CrossRefADSGoogle Scholar
  3. 3.
    U. Schneider, P. Lunkenheimer, R. Brand, A. Loidl, J. Non-Cryst. Solids 235-237, 173 (1998)CrossRefADSGoogle Scholar
  4. 4.
    Dynamics in Small Confining Systems IV, edited by J.M. Drake, G.M. Grest, J. Klafter, R. Kopelman (Materials Reseach Society, Pittsburgh, 1999)Google Scholar
  5. 5.
    P. Pissis, J. Laudat, D. Daoukaki, A. Kyritsis, J. Non-Cryst. Solids 171, 201 (1994)CrossRefADSGoogle Scholar
  6. 6.
    P. Pissis, D. Daoukaki-Diamanti, L. Apekis, C. Christodoulides, J. Phys.: Condens. Matter 6, L325 (1994)CrossRefADSGoogle Scholar
  7. 7.
    J. Schüller, Y.B. Mel’nichenko, R. Richert, E.W. Fischer, Phys. Rev. Lett. 73, 2224 (1994)CrossRefADSGoogle Scholar
  8. 8.
    R. Stannarius, F. Kremer, M. Arndt, Phys. Rev. Lett. 75, 4698 (1995)CrossRefADSGoogle Scholar
  9. 9.
    Yu.B. Mel’nichenko, J. Schüller, R. Richert, B. Ewen, C.-K. Loong, J. Chem. Phys. 103, 2016 (1995)CrossRefADSGoogle Scholar
  10. 10.
    M. Arndt, R. Stannarius, W. Gorbatschow, F. Kremer, Phys. Rev. E 54, 5377 (1996)CrossRefADSGoogle Scholar
  11. 11.
    D. Daoukaki, G. Barut, R. Pelster, G. Nimtz, A. Kyritsis, P. Pissis, Phys. Rev. B 58, 5336 (1998)CrossRefADSGoogle Scholar
  12. 12.
    G. Barut, P. Pissis, R. Pelster, G. Nimtz, Phys. Rev. Lett. 80, 3543 (1998)CrossRefADSGoogle Scholar
  13. 13.
    K. Fukao, Y. Miyamoto, Phys. Rev. E 61, 1743 (2000)CrossRefADSGoogle Scholar
  14. 14.
    R. Bergman, J. Swenson, L. Börjesson, P. Jacobsson, J. Chem. Phys. 113, 357 (2000)CrossRefADSGoogle Scholar
  15. 15.
    C. Svanberg, R. Bergman, P. Jacobsson, L. Börjesson, Phys. Rev. B 66, 054304 (2002)CrossRefADSGoogle Scholar
  16. 16.
    J.S. Sharp, J.A. Forrest, Phys. Rev. E 67, 031805 (2003)CrossRefADSGoogle Scholar
  17. 17.
    A. Serghei, F. Kremer, Rev. Sci. Instrum. 77, 116108 (2006)CrossRefADSGoogle Scholar
  18. 18.
    C.A. Angell, K.L. Ngai, G.B. McKenna, P.F. McMillan, S.W. Martin, J. Appl. Phys. 88, 3113 (2000)CrossRefADSGoogle Scholar
  19. 19.
    G.B. McKenna, J. Phys. IV (France) 10, Pr7-53 (2000)Google Scholar
  20. 20.
    M.D. Ediger, C.A. Angell, S.R. Nagel, J. Phys. Chem. 100, 13200 (1996)CrossRefGoogle Scholar
  21. 21.
    F. He, L.-M. Wang, R. Richert, Phys. Rev. B 71, 144205 (2005)CrossRefADSGoogle Scholar
  22. 22.
    J. Schüller, R. Richert, E.W. Fischer, Phys. Rev. B 52, 15232 (1995)CrossRefADSGoogle Scholar
  23. 23.
    S. Havriliak, S. Negami, Polymer 8, 101 (1967)CrossRefGoogle Scholar
  24. 24.
    X. Yan, C. Streck, R. Richert, Mater. Res. Soc. Symp. Proc. 464, 33 (1997)Google Scholar
  25. 25.
    X. Yan, thesis, Mainz (Germany), 1998Google Scholar
  26. 26.
    Principles of Dielectrics, edited by B.K.P. Scaife (Clarendon, Oxford, 1989)Google Scholar
  27. 27.
    R.W. Sillars, J. Inst. Electr. Eng. 80, 378 (1937)Google Scholar
  28. 28.
    J. Jäckle (private communication)Google Scholar
  29. 29.
    R. Richert, Eur. Phys. J. B 68, 197 (2009)CrossRefADSGoogle Scholar
  30. 30.
    R. Richert, Phys. Rev. B 54, 15762 (1996)CrossRefADSGoogle Scholar
  31. 31.
    T. Hanai, Bull. Inst. Chem. Res. Kyoto Univ. 39, 341 (1961)Google Scholar
  32. 32.
    H. Looyenga, Physica 31, 401 (1965)CrossRefADSGoogle Scholar
  33. 33.
    D.J. Bergman, Phys. Rev. Lett. 44, 1285 (1980)CrossRefADSGoogle Scholar
  34. 34.
    R. Pelster, Phys. Rev. B 59, 9214 (1999)CrossRefMathSciNetADSGoogle Scholar
  35. 35.
    R. Hilfer, Phys. Rev. B 44, 60 (1991)CrossRefADSGoogle Scholar
  36. 36.
    T. Saraidarov, E. Axelrod, Y. Feldman, R. Reisfeld, Chem. Phys. Lett. 324, 7 (2000)CrossRefADSGoogle Scholar
  37. 37.
    A. Gutina, Y. Haruvy, I. Gilath, E. Axelrod, N. Kozlovich, Y. Feldman, J. Phys. Chem. B 103, 5454 (1999)CrossRefGoogle Scholar
  38. 38.
    E. Axelrod, B. Urbach, A. Sa’ar, Y. Feldman, J. Phys. D: Appl. Phys. 39, 1326 (2006)CrossRefGoogle Scholar
  39. 39.
    Y. Ryabov, A. Gutina, V. Arkhipov, Y. Feldman, J. Phys. Chem. B 105, 1845 (2001)CrossRefGoogle Scholar
  40. 40.
    C. Streck, Yu.B. Mel’nichenko, R. Richert, Phys. Rev. B 53, 5341 (1996)CrossRefADSGoogle Scholar
  41. 41.
    H. Wendt, R. Richert, J. Phys.: Condens. Matter 11, A199 (1999)CrossRefADSGoogle Scholar
  42. 42.
    R. Richert, M. Yang, J. Phys. Chem. B 107, 895 (2003)CrossRefGoogle Scholar
  43. 43.
    L.-M. Wang, F. He, R. Richert, Phys. Rev. Lett. 92, 095701 (2004)CrossRefADSGoogle Scholar
  44. 44.
    R. Richert, J. Chem. Phys. 113, 8404 (2000)CrossRefADSGoogle Scholar
  45. 45.
    K. Fukao, S. Uno, Y. Miyamoto, A. Hoshino, H. Miyaji, Phys. Rev. E 64, 051807 (2001)CrossRefADSGoogle Scholar
  46. 46.
    J.S. Sharp, J.A. Forrest, Phys. Rev. E 67, 031805 (2003)CrossRefADSGoogle Scholar
  47. 47.
    Y.K. Cho, H. Watanabe, S. Granick, J. Chem. Phys. 110, 9688 (1999)CrossRefADSGoogle Scholar
  48. 48.
    A. Schönhals, R. Stauga, J. Chem. Phys. 108, 5130 (1998)CrossRefADSGoogle Scholar
  49. 49.
    L. Petychakis, G. Floudas, G. Fleischer, Europhys. Lett. 40, 685 (1997)CrossRefADSGoogle Scholar
  50. 50.
    H. Wagner, R. Richert, J. Phys. Chem. B 103, 4071 (1999)CrossRefGoogle Scholar
  51. 51.
    R. Bergman, J. Mattsson, C. Svanberg, G.A. Schwartz, J. Swenson, Europhys. Lett. 64, 675 (2003)CrossRefADSGoogle Scholar
  52. 52.
    A. Huwe, F. Kremer, P. Behrens, W. Schwieger, Phys. Rev. Lett. 82, 2338 (1999)CrossRefADSGoogle Scholar
  53. 53.
    P. Pissis, A. Kyritsis, D. Daoukaki, G. Barut, R. Pelster, G. Nimtz, J. Phys.: Condens. Matter 10, 6205 (1998)CrossRefADSGoogle Scholar
  54. 54.
    M. Arndt, R. Stannarius, H. Groothues, E. Hempel, F. Kremer, Phys. Rev. Lett. 79, 2077 (1997)CrossRefADSGoogle Scholar
  55. 55.
    W. Gorbatschow, M. Arndt, R. Stannarius, F. Kremer, Europhys. Lett. 35, 719 (1996)CrossRefADSGoogle Scholar
  56. 56.
    A. Huwe, M. Arndt, F. Kremer, C. Haggenmüller, P. Behrens, J. Chem. Phys. 107, 9699 (1997)CrossRefADSGoogle Scholar
  57. 57.
    F. Kremer, A. Huwe, A. Schönhals, S.A. Rozanski, in Broadband Dielectric Spectroscopy, edited by F. Kremer, A. Schönhals (Springer, Berlin, 2002)Google Scholar

Copyright information

© EDP Sciences and Springer 2010

Authors and Affiliations

  • R. Richert
    • 1
  1. 1.Department of Chemistry and BiochemistryArizona State UniversityTempeUSA

Personalised recommendations