Advertisement

The European Physical Journal Special Topics

, Volume 188, Issue 1, pp 163–171 | Cite as

Quantitative comparison of single- and two-particle properties in the cuprates

  • W. Prestel
  • F. Venturini
  • B. Muschler
  • I. Tütto
  • R. HacklEmail author
  • M. Lambacher
  • A. Erb
  • Seiki Komiya
  • Shimpei Ono
  • Yoichi Ando
  • D. Inosov
  • V.B. Zabolotnyy
  • S.V. Borisenko
Regular Article

Abstract.

We explore the strong variations of the electronic properties of copper-oxygen compounds across the doping phase diagram in a quantitative way. To this end we calculate the electronic Raman response on the basis of results from angle-resolved photoemission spectroscopy (ARPES). In the limits of our approximations we find agreement on the overdoped side and pronounced discrepancies at lower doping. In contrast to the successful approach for the transport properties at low energies, the Raman and the ARPES data cannot be reconciled by adding angle-dependent momentum scattering. We discuss possible routes towards an explanation of the suppression of spectral weight close to the (π, 0) points which sets in abruptly close to 21% doping.

Keywords

Fermi Surface European Physical Journal Special Topic Charge Density Wave Spectral Weight Quantum Critical Point 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J.G. Bednorz, K.A. Müller, Z. Phys. B 64, 189 (1986)CrossRefADSGoogle Scholar
  2. 2.
    G.M. Eliashberg, Zh. Eksperimen. i Teor. Fiz. 38, 966 (1960)Google Scholar
  3. 3.
    G.M. Eliashberg, Sov. Phys. JETP 11, 696 (1960)Google Scholar
  4. 4.
    J.P. Carbotte, Rev. Mod. Phys. 62, 1062 (1990)CrossRefGoogle Scholar
  5. 5.
    J.P. Carbotte, F. Marsiglio, The Physics of Superconductors (Springer, Berlin, 2003), p. 233Google Scholar
  6. 6.
    S. Engelsberg, J.R. Schrieffer, Phys. Rev. 131, 993 (1963)CrossRefADSGoogle Scholar
  7. 7.
    P.B. Allen, M.L. Cohen, Phys. Rev. Lett. 29, 1593 (1972)CrossRefADSGoogle Scholar
  8. 8.
    T. Cuk, et al., Phys. Stat. Sol. (b) 242, 11 (2005)CrossRefADSGoogle Scholar
  9. 9.
    W.L. McMillan, J.M. Rowell, Phys. Rev. Lett. 14, 108 (1965)CrossRefADSGoogle Scholar
  10. 10.
    J. Carbotte, E. Schachinger, D.N. Basov, Nature 401, 354 (1999)CrossRefADSGoogle Scholar
  11. 11.
    A.A. Kordyuk, et al., Eur. Phys. J. Special Topics 188, 153 (2010)CrossRefGoogle Scholar
  12. 12.
    P.W. Anderson, Science 237, 1196 (1987)CrossRefADSGoogle Scholar
  13. 13.
    P.A. Lee, Naoto Nagaosa, Xiao-Gan Wen, Rev. Mod. Phys. 78, 17 (2006)CrossRefADSGoogle Scholar
  14. 14.
    P.W. Anderson, Science 317, 1705 (2007)CrossRefGoogle Scholar
  15. 15.
    T. Dahm, et al., Nat. Phys. 5, 217 (2009)CrossRefGoogle Scholar
  16. 16.
    B. Muschler, et al., Eur. Phys. J. Special Topics 188, 131 (2010)CrossRefADSGoogle Scholar
  17. 17.
    F. Venturini, Doctoral Thesis, Technische Universität München, 2003Google Scholar
  18. 18.
    T.P. Devereaux, R. Hackl, Rev. Mod. Phys. 79, 175 (2007)CrossRefADSGoogle Scholar
  19. 19.
    D.J. Scalapino, Superconductivity I, edited by R.D.Parks (Marcel Dekker, New York, 1969), p. 449Google Scholar
  20. 20.
    G. Mahan, Many-Particle Physics (Kluwer Academic/Plenum Publishers, New York, 2000)Google Scholar
  21. 21.
    M. Eschrig, M.R. Norman, Phys. Rev. B 67, 144503 (2003)CrossRefADSGoogle Scholar
  22. 22.
    A.V. Chubukov, M.R. Norman, Phys. Rev. B 70, 174505 (2004)CrossRefADSGoogle Scholar
  23. 23.
    C.M. Varma, et al., Phys. Rev. Lett. 63, 1996 (1989)CrossRefADSGoogle Scholar
  24. 24.
    D. Inosov, et al., Phys. Rev. B 75, 172505 (2007)CrossRefADSGoogle Scholar
  25. 25.
    F. Venturini, et al., Phys. Rev. Lett. 89, 107003 (2002)CrossRefADSGoogle Scholar
  26. 26.
    S. Blanc, et al., Phys. Rev. B 80, 140502(R) (2009)CrossRefMathSciNetADSGoogle Scholar
  27. 27.
    A. Damascelli, Z. Hussain, Z.-X. Shen, Rev. Mod. Phys. 75, 473 (2003)CrossRefADSGoogle Scholar
  28. 28.
    T. Yoshida, et al., Phys. Rev. B 74, 224510 (2006)CrossRefADSGoogle Scholar
  29. 29.
    J. Chang, et al., Phys. Rev. B 78, 205103 (2008)CrossRefADSGoogle Scholar
  30. 30.
    S. Nakamae, et al., Phys. Rev. B 68, 100502 (2003)CrossRefADSGoogle Scholar
  31. 31.
    C.M. Varma, Phys. Rev. B 55, 14554 (1997)CrossRefADSGoogle Scholar
  32. 32.
    Y. Li, et al., Nature 455, 372 (2008)CrossRefADSGoogle Scholar
  33. 33.
    S. Caprara, et al., Phys. Rev. B 59, 14980 (1999)CrossRefADSGoogle Scholar
  34. 34.
    M. Grilli, et al., Physica B 404, 3070 (2009)CrossRefADSGoogle Scholar
  35. 35.
    W. Metzner, D. Rohe, S. Andergasen, Phys. Rev. Lett. 91, 066402 (2003)CrossRefADSGoogle Scholar
  36. 36.
    J.M. Tranquada, et al., Nature 375, 561 (1995)CrossRefADSGoogle Scholar
  37. 37.
    J.M. Tranquada, et al., Nature 429, 535 (2004)CrossRefADSGoogle Scholar
  38. 38.
    H.H. Klauss, et al., Phys. Rev. Lett. 85, 4590 (2000)CrossRefADSGoogle Scholar
  39. 39.
    J. Fink, et al., Phys. Rev. B 79, 100502 (2009)CrossRefADSGoogle Scholar
  40. 40.
    V. Hinkov, et al., Eur. Phys. J. Special Topics 188, 113 (2010)CrossRefGoogle Scholar
  41. 41.
    M. Vojta, Eur. Phys. J. Special Topics 188, 49 (2010)CrossRefGoogle Scholar
  42. 42.
    H. Alloul, T. Ohno, P. Mendels, Phys. Rev. Lett. 63, 1700 (1989)CrossRefADSGoogle Scholar
  43. 43.
    C.C. Holmes, et al., Phys. Rev. Lett. 71, 1645 (1993)CrossRefADSGoogle Scholar
  44. 44.
    C. Bernhard, et al., Phys. Rev. Lett. 80, 1767 (1998)ADSGoogle Scholar
  45. 45.
    D.N. Basov, T. Timusk, Rev. Mod. Phys. 77, 721 (2003)CrossRefADSGoogle Scholar
  46. 46.
    D. van der Marel, et al., Nature 425, 271 (2003)CrossRefADSGoogle Scholar
  47. 47.
    N.E. Hussey, Eur. Phys. J. B 31, 495 (2003)CrossRefADSGoogle Scholar
  48. 48.
    R.A. Cooper, et al., Science 323, 603 (2009)CrossRefADSGoogle Scholar
  49. 49.
    O.K. Andersen, et al., J. Phys. Chem. Solids 56, 1573 (2009)CrossRefADSGoogle Scholar
  50. 50.
    T.P. Devereaux, Phys. Rev. B 68, 094503 (2003)CrossRefADSGoogle Scholar
  51. 51.
    A.P. Kampf, T.P. Devereaux, Phys. Rev. B 56, 2360 (1997)CrossRefADSGoogle Scholar
  52. 52.
    E. Abrahams, C.M. Varma, PNAS 97, 5714 (2000)CrossRefADSGoogle Scholar
  53. 53.
    M. Abdel-Jawad, et al., Phys. Rev. Lett. 99, 107002 (2007)CrossRefADSGoogle Scholar
  54. 54.
    C. Kendziora, A. Rosenberg, Phys. Rev. B 52, R9867 (1995)CrossRefADSGoogle Scholar
  55. 55.
    R. Nemetschek, et al., Phys. Rev. Lett. 78, 4837 (1997)CrossRefADSGoogle Scholar
  56. 56.
    S. Sugai, T. Hosokawa, Phys. Rev. Lett. 85, 1112 (2000)CrossRefADSGoogle Scholar
  57. 57.
    M. Opel, et al., Phys. Rev. B 61, 9752 (2000)CrossRefADSGoogle Scholar
  58. 58.
    F. Venturini, et al., J. Phys. Chem. Solids 63, 2345 (2002)CrossRefADSGoogle Scholar
  59. 59.
    R. Hackl, et al., Adv. Solid State Phys. 45, 227 (2005)CrossRefGoogle Scholar
  60. 60.
    T.P. Devereaux, Phys. Rev. Lett 79, 175 (1995)Google Scholar
  61. 61.
    M. Le Tacon, et al., Nature Physics 2, 537 (2006)CrossRefADSGoogle Scholar
  62. 62.
    N. Munnikes, et al. (preprint) [arXiv:0901.3448]Google Scholar
  63. 63.
    A.F. Goncharov, V.V. Struzhkin, J. Raman Spectrosc. 34, 532 (2003)CrossRefADSGoogle Scholar
  64. 64.
    H. Eisaki, et al., Phys. Rev. B 69, 064512 (2004)CrossRefADSGoogle Scholar

Copyright information

© EDP Sciences and Springer 2010

Authors and Affiliations

  • W. Prestel
    • 1
  • F. Venturini
    • 1
  • B. Muschler
    • 1
  • I. Tütto
    • 2
  • R. Hackl
    • 1
    Email author
  • M. Lambacher
    • 1
  • A. Erb
    • 1
  • Seiki Komiya
    • 3
  • Shimpei Ono
    • 3
  • Yoichi Ando
    • 4
  • D. Inosov
    • 5
  • V.B. Zabolotnyy
    • 5
  • S.V. Borisenko
    • 5
  1. 1.Walther Meissner InstitutBayerische Akademie der WissenschaftenGarchingGermany
  2. 2.Research Institute for Solid State Physics and OpticsHungarian Academy of SciencesBudapestHungary
  3. 3.Central Research Institute of the Electric Power IndustryKomae, TokyoJapan
  4. 4.Institute of Scientific and Industrial ResearchOsaka UniversityIbaraki, OsakaJapan
  5. 5.IFW DresdenDresdenGermany

Personalised recommendations