Advertisement

The European Physical Journal Special Topics

, Volume 188, Issue 1, pp 73–88 | Cite as

Pseudogap and precursor superconductivity in underdoped cuprate high temperature superconductors: A far-infrared ellipsometry study

  • A. Dubroka
  • L. Yu
  • D. Munzar
  • K.W. Kim
  • M. Rössle
  • V.K. Malik
  • C.T. Lin
  • B. Keimer
  • Th. Wolf
  • C. BernhardEmail author
Review

Abstract.

With the technique of infrared ellipsometry we performed a detailed study of the temperature- and doping dependence of the c-axis response of a series of YBa2Cu3O7−δ single crystals. In particular, we explored the anomalous electronic properties at temperatures above the macroscopic superconducting transition temperature, T c, whose conflicting explanations range from a precursor superconducting state to electronic correlations that compete with superconductivity. We show that the c-axis spectra provide evidence that both kinds of correlations are present and that their contributions can be disentangled based on an analysis with a so-called multilayer-model. We find that the onset temperature, T *, and the energy scale, ΔPG, of the competing pseudogap increase rapidly towards the underdoped side whereas they vanish on the overdoped side. In addition, we provide evidence that in a strongly underdoped sample the precursor superconducting correlations develop below an onset temperature, T ons, that is considerably lower than T * but still much higher than T c.

Keywords

European Physical Journal Special Topic Spectral Weight Underdoped Sample Drude Term Pseudogap Phenomenon 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J.W. Loram, K.A. Mirza, J.R. Cooper, W.Y. Liang, J.M. Wade, J. Supercon. 7, 243 (1994)CrossRefADSGoogle Scholar
  2. 2.
    T. Timusk, B. Statt, Rep. Prog. Phys. 62, 61 (1999)CrossRefADSGoogle Scholar
  3. 3.
    J.L. Tallon, et al., Phys. Stat. Sol. (b) 215, 531 (1999)CrossRefADSGoogle Scholar
  4. 4.
    J.W. Loram, J. Luo, J.R. Cooper, W.Y. Liang, J.L. Tallon, J. Phys. Chem. Solids 62, 59 (2001)CrossRefADSGoogle Scholar
  5. 5.
    M.R. Presland, J.L. Tallon, R.G. Buckley, R.S. Liu, N.E. Flower, Physica C 176, 95 (1991)CrossRefADSGoogle Scholar
  6. 6.
    J.L. Tallon, C. Bernhard, H. Shaked, R.L. Hitterman, J.D. Jorgensen, Phys. Rev. B 51, 12911 (1995)CrossRefADSGoogle Scholar
  7. 7.
    H. Alloul, T. Ohno, P. Mendels, Phys. Rev. Lett. 63, 1700 (1989)CrossRefADSGoogle Scholar
  8. 8.
    J.W. Loram, K.A. Mirza, J.R. Cooper, W.Y. Liang, Phys. Rev. Lett. 71, 1740 (1993)CrossRefADSGoogle Scholar
  9. 9.
    A.G. Loeser, et al., Science 273, 325 (1996)CrossRefADSGoogle Scholar
  10. 10.
    H. Ding, et al., Nature 382, 51 (1996)CrossRefADSGoogle Scholar
  11. 11.
    K. Tanaka, et al., Science 314, 1910 (2006)CrossRefADSGoogle Scholar
  12. 12.
    V.M. Krasnov, A. Yurgens, D. Winkler, P. Delsing, T. Claeson, Phys. Rev. Lett. 84, 5860 (2000)CrossRefADSGoogle Scholar
  13. 13.
    M. Kugler, O. Fischer, C. Renner, S. Ono, Y. Ando, Phys. Rev. Lett. 86, 4911 (2001)CrossRefADSGoogle Scholar
  14. 14.
    N. Miyakawa, et al., Physica C 364, 475 (2001)CrossRefADSGoogle Scholar
  15. 15.
    O. Fischer, M. Kugler, I. Maggio-Aprile, C. Berthod, C. Renner, Rev. Mod. Phys. 79, 353 (2007)CrossRefADSGoogle Scholar
  16. 16.
    K.K. Gomes, et al., Nature 447, 569 (2007)CrossRefADSGoogle Scholar
  17. 17.
    J.W. Alldredge, et al., Nature Physics 4, 319 (2008)CrossRefGoogle Scholar
  18. 18.
    K. Chatterjee, et al., Nature Physics 4, 108 (2008)CrossRefADSGoogle Scholar
  19. 19.
    G. Deutscher, Nature 397, 410 (1999)CrossRefADSGoogle Scholar
  20. 20.
    Z.A. Xu, et al., Nature 406, 486 (2000)CrossRefADSGoogle Scholar
  21. 21.
    C. Meingast, et al., Phys. Rev. Lett. 86, 1606 (2001)CrossRefADSGoogle Scholar
  22. 22.
    C.C. Homes, T. Timusk, R. Liang, D.A. Bonn, W.N. Hardy, Phys. Rev. Lett. 71, 1645 (1993)CrossRefADSGoogle Scholar
  23. 23.
    J. Schützmann, et al., Phys. Rev. B 52, 13665, (1995)CrossRefADSGoogle Scholar
  24. 24.
    C. Bernhard, et al., Phys. Rev. Lett. 80, 1762 (1998)CrossRefADSGoogle Scholar
  25. 25.
    C. Bernhard, et al., Phys. Rev. B 59, R6631 (1999)CrossRefADSGoogle Scholar
  26. 26.
    D.N. Basov, T. Timusk, Rev. Mod. Phys.77, 721 (2005)CrossRefADSGoogle Scholar
  27. 27.
    J.L. Tallon, J.W. Loram, Physica C 349, 53 (2001)CrossRefADSGoogle Scholar
  28. 28.
    C. Bernhard, et al., Phys. Rev. B 62, 9138 (2000)CrossRefADSGoogle Scholar
  29. 29.
    Li Yu, et al., Phys. Rev. Lett. 98, 177004 (2008)CrossRefADSGoogle Scholar
  30. 30.
    V.J. Emery, S.A. Kivelson, Nature 374, 434 (1995)CrossRefADSGoogle Scholar
  31. 31.
    I. Kosztin, Q.J. Chen, Y.J. Kao, K. Levin, Phys. Rev. B 61, 11662 (2000)CrossRefADSGoogle Scholar
  32. 32.
    P.W. Anderson, et al., J. Phys. Condensed Mat. 16, R755 (2004)CrossRefADSGoogle Scholar
  33. 33.
    T. Dahm, D. Manske, L. Tewordt, Phys. Rev. B 56, 11419 (1997)CrossRefADSGoogle Scholar
  34. 34.
    A.V. Chubukov, J. Schmalian, Phys. Rev. B 57, R11085 (1998)CrossRefADSGoogle Scholar
  35. 35.
    C.M. Varma, Phys. Rev. Lett. 83, 3538 (1999)CrossRefADSGoogle Scholar
  36. 36.
    C.C. Homes, T. Timusk, D.A. Bonn, R. Liang, W.N. Hardy, Physica C 254, 265 (1995)CrossRefADSGoogle Scholar
  37. 37.
    C.C. Homes, T. Timusk, D.A. Bonn, R. Liang, W.N. Hardy, Can. J. Phys. 73, 663 (1995)ADSGoogle Scholar
  38. 38.
    C. Bernhard, et al., J. Phys. Chem. Solids 69, 3064 (2008)CrossRefADSGoogle Scholar
  39. 39.
    M. Tinkham, Introduction to Superconductivity (McGraw-Hill, Singapore, 1996)Google Scholar
  40. 40.
    Y. Wang, L. Li, N.P. Ong, Phys. Rev. B 73, 024510 (2006)CrossRefADSGoogle Scholar
  41. 41.
    L. Li, et al., Phys. Rev. B 81, 054510 (2010)CrossRefADSGoogle Scholar
  42. 42.
    J.L. Tallon, J.G. Storey, J.W. Loram(2009) [arXiv0908.4428v1]Google Scholar
  43. 43.
    C. Bernhard, et al., Phys. Rev. B 61, 618 (2000)CrossRefADSGoogle Scholar
  44. 44.
    D. van der Marel, A. Tsvetkov, Czech. J. Phys. 46, 3165 (1996)CrossRefADSGoogle Scholar
  45. 45.
    M. Grüninger, D. van der Marel, A.A. Tsvetkov, A. Erb, Phys. Rev. Lett. 84, 1575 (2000)CrossRefADSGoogle Scholar
  46. 46.
    D. Munzar, C. Bernhard, A. Golnik, J. Humlíček, M. Cardona, Sol. Stat. Comm. 112, 365 (1999)CrossRefADSGoogle Scholar
  47. 47.
    A.V. Boris, et al., Phys. Rev. Lett. 89, 277001 (2002)CrossRefADSGoogle Scholar
  48. 48.
    A. Dubroka, D. Munzar, Physica C 405, 133 (2004)CrossRefADSGoogle Scholar
  49. 49.
    C.T. Lin, W. Zhou, W.Y. Liang, E. Schonherr, H. Bender, Physica C 195, 291 (1992)CrossRefADSGoogle Scholar
  50. 50.
    S.I. Schlachter, et al., Int. J. Modern Phys. B 14, 3673 (2000)CrossRefADSGoogle Scholar
  51. 51.
    C. Bernhard, J.L. Tallon, Phys. Rev. B 54, 10201 (1996)CrossRefADSGoogle Scholar
  52. 52.
    J.L. Tallon, et al., Phys. Rev. B 53, 11972 (1996)CrossRefADSGoogle Scholar
  53. 53.
    S.D. Obertelli, J.R. Cooper, J.L. Tallon, Phys. Rev. B 46, 14928 (1992)CrossRefADSGoogle Scholar
  54. 54.
    R. Henn, C. Bernhard, A. Wittlin, M. Cardona, S. Uchida, Thin Solid Films 313, 642 (1998)CrossRefADSGoogle Scholar
  55. 55.
    A. Golnik, C. Bernhard, J. Humlíček, M. Kläser, M. Cardona, Phys. Stat. Sol. (b) 215, 553 (1999)CrossRefADSGoogle Scholar
  56. 56.
    C. Bernhard, J. Humlíček, B. Keimer, Thin Solid Films 455, 143 (2004)CrossRefADSGoogle Scholar
  57. 57.
    R.M.A. Azzam, N.H. Bashara, Ellipsometry and Polarized Light (North-Holland, Amsterdam, 1977)Google Scholar
  58. 58.
    A.V. Pimenov, et al., Phys. Rev. Lett. 94, 227003 (2005)CrossRefADSGoogle Scholar
  59. 59.
    M. Dressel, G. Grüner, Electrodynamics of Solids (Cambridge University Press, Cambridge, 2002)Google Scholar
  60. 60.
    M.R. Norman, M. Randeira, H. Ding, J.C. Campuzano, Phys. Rev. B 57, 11093 (1998)CrossRefADSGoogle Scholar
  61. 61.
    D. Munzar, J. Phys. Chem. Solids 67, 308 (2006)CrossRefADSGoogle Scholar
  62. 62.
    J. Chaloupka, C. Bernhard, D. Munzar, Phys. Rev. B 79, 185413 (2009)CrossRefADSGoogle Scholar
  63. 63.
    C. Bernhard, et al., Phys. Rev. Lett. 86, 1614 (2001)CrossRefADSGoogle Scholar
  64. 64.
    V. Železn, et al., Phys. Rev. B 63, 060502 (2001)CrossRefGoogle Scholar
  65. 65.
    A. Dubroka, et al.(unpublished)Google Scholar
  66. 66.
    T. Timusk, C.C. Homes, Sol. Stat Commun. 126, 63 (2003)CrossRefADSGoogle Scholar
  67. 67.
    A.D. LaForge, et al., Phys. Rev. B 76, 054524 (2007)CrossRefADSGoogle Scholar
  68. 68.
    R. Henn, et al., Phys. Rev. B 55, 3285 (1997)CrossRefADSGoogle Scholar
  69. 69.
    O.K. Andersen, et al., J. Phys. Chem. Solids 56, 1573 (1995)CrossRefADSGoogle Scholar
  70. 70.
    T. Xiang, J.M. Wheatley, Phys. Rev. Lett. 77, 4632 (1996)CrossRefADSGoogle Scholar
  71. 71.
    S.V. Borisenko, et al., Phys. Rev. Lett. 96, 117004 (2006)CrossRefADSGoogle Scholar
  72. 72.
    V.B. Zabolotnyy, et al., Phys. Rev. B 76, 064519 (2007)CrossRefADSGoogle Scholar

Copyright information

© EDP Sciences and Springer 2010

Authors and Affiliations

  • A. Dubroka
    • 1
  • L. Yu
    • 1
  • D. Munzar
    • 2
  • K.W. Kim
    • 1
  • M. Rössle
    • 1
  • V.K. Malik
    • 1
  • C.T. Lin
    • 3
  • B. Keimer
    • 3
  • Th. Wolf
    • 4
  • C. Bernhard
    • 1
    Email author
  1. 1.Department of Physics and Fribourg Center for NanomaterialsUniversity of FribourgFribourgSwitzerland
  2. 2.Institute of Condensed Matter Physics, Faculty of ScienceMasaryk UniversityBrnoCzech Republic
  3. 3.Max-Planck-Institut für FestkörperforschungStuttgartGermany
  4. 4.Karlsruhe Institute of TechnologyKarlsruheGermany

Personalised recommendations